A Bayesian method for linear, inequality-constrained adjustment and its application to GPS positioning
One of the typical approaches to linear, inequality-constrained adjustment (LICA) is to solve a least-squares (LS) problem subject to the linear inequality constraints. The main disadvantage of this approach is that the statistical properties of the estimate are not easily determined and thus no gen...
Gespeichert in:
Veröffentlicht in: | Journal of geodesy 2005-04, Vol.78 (9), p.528-534 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 534 |
---|---|
container_issue | 9 |
container_start_page | 528 |
container_title | Journal of geodesy |
container_volume | 78 |
creator | Zhu, J. Santerre, R. Chang, X.-W. |
description | One of the typical approaches to linear, inequality-constrained adjustment (LICA) is to solve a least-squares (LS) problem subject to the linear inequality constraints. The main disadvantage of this approach is that the statistical properties of the estimate are not easily determined and thus no general conclusions about the superiority of the estimate can be made. A new approach to solving the LICA problem is proposed. The linear inequality constraints are converted into prior information on the parameters with a uniform distribution, and consequently the LICA problem is reformulated into a Bayesian estimation problem. It is shown that the LS estimate of the LICA problem is identical to the Bayesian estimate based on the mode of the posterior distribution. Finally, the Bayesian method is applied to GPS positioning. Results for four field tests show that, when height information is used, the GPS phase ambiguity resolution can be improved significantly and the new approach is feasible.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s00190-004-0425-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_639563482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088730401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-96df4b516f6d846a8fdc2e29890fcd878b16a903ced429a244590dda0d37c01e3</originalsourceid><addsrcrecordid>eNotkM1KAzEYRYMoWKsP4C64Npq_yUyWtWgVCgrqOqT50ZRpMk3Sxby9U-rq8l0O34UDwC3BDwTj9rFgTCRGGHOEOW3QeAZmhDOKCJP8HMyw5BK1LeGX4KqU7US3TSdmwC_gkx5dCTrCnau_yUKfMuxDdDrfwyn2B92HOiKTYqlZT42F2m4Ppe5crFBHC0MtUA9DH4yuIUVYE1x9fMIhlXC8Q_y5Bhde98Xd_OccfL88fy1f0fp99bZcrJGhLa1ICuv5piHCC9txoTtvDXVUdhJ7Y7u22xChJWbGWU6lppw3ElursWWtwcSxObg7_R1y2h9cqWqbDjlOk0ow2QjGOzpB5ASZnErJzqshh53OoyJYHW2qk0012VRHm2pkf35baYY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>639563482</pqid></control><display><type>article</type><title>A Bayesian method for linear, inequality-constrained adjustment and its application to GPS positioning</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhu, J. ; Santerre, R. ; Chang, X.-W.</creator><creatorcontrib>Zhu, J. ; Santerre, R. ; Chang, X.-W.</creatorcontrib><description>One of the typical approaches to linear, inequality-constrained adjustment (LICA) is to solve a least-squares (LS) problem subject to the linear inequality constraints. The main disadvantage of this approach is that the statistical properties of the estimate are not easily determined and thus no general conclusions about the superiority of the estimate can be made. A new approach to solving the LICA problem is proposed. The linear inequality constraints are converted into prior information on the parameters with a uniform distribution, and consequently the LICA problem is reformulated into a Bayesian estimation problem. It is shown that the LS estimate of the LICA problem is identical to the Bayesian estimate based on the mode of the posterior distribution. Finally, the Bayesian method is applied to GPS positioning. Results for four field tests show that, when height information is used, the GPS phase ambiguity resolution can be improved significantly and the new approach is feasible.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0949-7714</identifier><identifier>EISSN: 1432-1394</identifier><identifier>DOI: 10.1007/s00190-004-0425-y</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Bayesian analysis ; Field study ; Field tests ; Geodetics</subject><ispartof>Journal of geodesy, 2005-04, Vol.78 (9), p.528-534</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-96df4b516f6d846a8fdc2e29890fcd878b16a903ced429a244590dda0d37c01e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Zhu, J.</creatorcontrib><creatorcontrib>Santerre, R.</creatorcontrib><creatorcontrib>Chang, X.-W.</creatorcontrib><title>A Bayesian method for linear, inequality-constrained adjustment and its application to GPS positioning</title><title>Journal of geodesy</title><description>One of the typical approaches to linear, inequality-constrained adjustment (LICA) is to solve a least-squares (LS) problem subject to the linear inequality constraints. The main disadvantage of this approach is that the statistical properties of the estimate are not easily determined and thus no general conclusions about the superiority of the estimate can be made. A new approach to solving the LICA problem is proposed. The linear inequality constraints are converted into prior information on the parameters with a uniform distribution, and consequently the LICA problem is reformulated into a Bayesian estimation problem. It is shown that the LS estimate of the LICA problem is identical to the Bayesian estimate based on the mode of the posterior distribution. Finally, the Bayesian method is applied to GPS positioning. Results for four field tests show that, when height information is used, the GPS phase ambiguity resolution can be improved significantly and the new approach is feasible.[PUBLICATION ABSTRACT]</description><subject>Bayesian analysis</subject><subject>Field study</subject><subject>Field tests</subject><subject>Geodetics</subject><issn>0949-7714</issn><issn>1432-1394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkM1KAzEYRYMoWKsP4C64Npq_yUyWtWgVCgrqOqT50ZRpMk3Sxby9U-rq8l0O34UDwC3BDwTj9rFgTCRGGHOEOW3QeAZmhDOKCJP8HMyw5BK1LeGX4KqU7US3TSdmwC_gkx5dCTrCnau_yUKfMuxDdDrfwyn2B92HOiKTYqlZT42F2m4Ppe5crFBHC0MtUA9DH4yuIUVYE1x9fMIhlXC8Q_y5Bhde98Xd_OccfL88fy1f0fp99bZcrJGhLa1ICuv5piHCC9txoTtvDXVUdhJ7Y7u22xChJWbGWU6lppw3ElursWWtwcSxObg7_R1y2h9cqWqbDjlOk0ow2QjGOzpB5ASZnErJzqshh53OoyJYHW2qk0012VRHm2pkf35baYY</recordid><startdate>200504</startdate><enddate>200504</enddate><creator>Zhu, J.</creator><creator>Santerre, R.</creator><creator>Chang, X.-W.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>200504</creationdate><title>A Bayesian method for linear, inequality-constrained adjustment and its application to GPS positioning</title><author>Zhu, J. ; Santerre, R. ; Chang, X.-W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-96df4b516f6d846a8fdc2e29890fcd878b16a903ced429a244590dda0d37c01e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bayesian analysis</topic><topic>Field study</topic><topic>Field tests</topic><topic>Geodetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, J.</creatorcontrib><creatorcontrib>Santerre, R.</creatorcontrib><creatorcontrib>Chang, X.-W.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of geodesy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, J.</au><au>Santerre, R.</au><au>Chang, X.-W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian method for linear, inequality-constrained adjustment and its application to GPS positioning</atitle><jtitle>Journal of geodesy</jtitle><date>2005-04</date><risdate>2005</risdate><volume>78</volume><issue>9</issue><spage>528</spage><epage>534</epage><pages>528-534</pages><issn>0949-7714</issn><eissn>1432-1394</eissn><abstract>One of the typical approaches to linear, inequality-constrained adjustment (LICA) is to solve a least-squares (LS) problem subject to the linear inequality constraints. The main disadvantage of this approach is that the statistical properties of the estimate are not easily determined and thus no general conclusions about the superiority of the estimate can be made. A new approach to solving the LICA problem is proposed. The linear inequality constraints are converted into prior information on the parameters with a uniform distribution, and consequently the LICA problem is reformulated into a Bayesian estimation problem. It is shown that the LS estimate of the LICA problem is identical to the Bayesian estimate based on the mode of the posterior distribution. Finally, the Bayesian method is applied to GPS positioning. Results for four field tests show that, when height information is used, the GPS phase ambiguity resolution can be improved significantly and the new approach is feasible.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00190-004-0425-y</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0949-7714 |
ispartof | Journal of geodesy, 2005-04, Vol.78 (9), p.528-534 |
issn | 0949-7714 1432-1394 |
language | eng |
recordid | cdi_proquest_journals_639563482 |
source | Springer Nature - Complete Springer Journals |
subjects | Bayesian analysis Field study Field tests Geodetics |
title | A Bayesian method for linear, inequality-constrained adjustment and its application to GPS positioning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20method%20for%20linear,%20inequality-constrained%20adjustment%20and%20its%20application%20to%20GPS%20positioning&rft.jtitle=Journal%20of%20geodesy&rft.au=Zhu,%20J.&rft.date=2005-04&rft.volume=78&rft.issue=9&rft.spage=528&rft.epage=534&rft.pages=528-534&rft.issn=0949-7714&rft.eissn=1432-1394&rft_id=info:doi/10.1007/s00190-004-0425-y&rft_dat=%3Cproquest_cross%3E2088730401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=639563482&rft_id=info:pmid/&rfr_iscdi=true |