A Bayesian method for linear, inequality-constrained adjustment and its application to GPS positioning

One of the typical approaches to linear, inequality-constrained adjustment (LICA) is to solve a least-squares (LS) problem subject to the linear inequality constraints. The main disadvantage of this approach is that the statistical properties of the estimate are not easily determined and thus no gen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geodesy 2005-04, Vol.78 (9), p.528-534
Hauptverfasser: Zhu, J., Santerre, R., Chang, X.-W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 534
container_issue 9
container_start_page 528
container_title Journal of geodesy
container_volume 78
creator Zhu, J.
Santerre, R.
Chang, X.-W.
description One of the typical approaches to linear, inequality-constrained adjustment (LICA) is to solve a least-squares (LS) problem subject to the linear inequality constraints. The main disadvantage of this approach is that the statistical properties of the estimate are not easily determined and thus no general conclusions about the superiority of the estimate can be made. A new approach to solving the LICA problem is proposed. The linear inequality constraints are converted into prior information on the parameters with a uniform distribution, and consequently the LICA problem is reformulated into a Bayesian estimation problem. It is shown that the LS estimate of the LICA problem is identical to the Bayesian estimate based on the mode of the posterior distribution. Finally, the Bayesian method is applied to GPS positioning. Results for four field tests show that, when height information is used, the GPS phase ambiguity resolution can be improved significantly and the new approach is feasible.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s00190-004-0425-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_639563482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088730401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-96df4b516f6d846a8fdc2e29890fcd878b16a903ced429a244590dda0d37c01e3</originalsourceid><addsrcrecordid>eNotkM1KAzEYRYMoWKsP4C64Npq_yUyWtWgVCgrqOqT50ZRpMk3Sxby9U-rq8l0O34UDwC3BDwTj9rFgTCRGGHOEOW3QeAZmhDOKCJP8HMyw5BK1LeGX4KqU7US3TSdmwC_gkx5dCTrCnau_yUKfMuxDdDrfwyn2B92HOiKTYqlZT42F2m4Ppe5crFBHC0MtUA9DH4yuIUVYE1x9fMIhlXC8Q_y5Bhde98Xd_OccfL88fy1f0fp99bZcrJGhLa1ICuv5piHCC9txoTtvDXVUdhJ7Y7u22xChJWbGWU6lppw3ElursWWtwcSxObg7_R1y2h9cqWqbDjlOk0ow2QjGOzpB5ASZnErJzqshh53OoyJYHW2qk0012VRHm2pkf35baYY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>639563482</pqid></control><display><type>article</type><title>A Bayesian method for linear, inequality-constrained adjustment and its application to GPS positioning</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhu, J. ; Santerre, R. ; Chang, X.-W.</creator><creatorcontrib>Zhu, J. ; Santerre, R. ; Chang, X.-W.</creatorcontrib><description>One of the typical approaches to linear, inequality-constrained adjustment (LICA) is to solve a least-squares (LS) problem subject to the linear inequality constraints. The main disadvantage of this approach is that the statistical properties of the estimate are not easily determined and thus no general conclusions about the superiority of the estimate can be made. A new approach to solving the LICA problem is proposed. The linear inequality constraints are converted into prior information on the parameters with a uniform distribution, and consequently the LICA problem is reformulated into a Bayesian estimation problem. It is shown that the LS estimate of the LICA problem is identical to the Bayesian estimate based on the mode of the posterior distribution. Finally, the Bayesian method is applied to GPS positioning. Results for four field tests show that, when height information is used, the GPS phase ambiguity resolution can be improved significantly and the new approach is feasible.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0949-7714</identifier><identifier>EISSN: 1432-1394</identifier><identifier>DOI: 10.1007/s00190-004-0425-y</identifier><language>eng</language><publisher>Heidelberg: Springer Nature B.V</publisher><subject>Bayesian analysis ; Field study ; Field tests ; Geodetics</subject><ispartof>Journal of geodesy, 2005-04, Vol.78 (9), p.528-534</ispartof><rights>Springer-Verlag Berlin Heidelberg 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-96df4b516f6d846a8fdc2e29890fcd878b16a903ced429a244590dda0d37c01e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Zhu, J.</creatorcontrib><creatorcontrib>Santerre, R.</creatorcontrib><creatorcontrib>Chang, X.-W.</creatorcontrib><title>A Bayesian method for linear, inequality-constrained adjustment and its application to GPS positioning</title><title>Journal of geodesy</title><description>One of the typical approaches to linear, inequality-constrained adjustment (LICA) is to solve a least-squares (LS) problem subject to the linear inequality constraints. The main disadvantage of this approach is that the statistical properties of the estimate are not easily determined and thus no general conclusions about the superiority of the estimate can be made. A new approach to solving the LICA problem is proposed. The linear inequality constraints are converted into prior information on the parameters with a uniform distribution, and consequently the LICA problem is reformulated into a Bayesian estimation problem. It is shown that the LS estimate of the LICA problem is identical to the Bayesian estimate based on the mode of the posterior distribution. Finally, the Bayesian method is applied to GPS positioning. Results for four field tests show that, when height information is used, the GPS phase ambiguity resolution can be improved significantly and the new approach is feasible.[PUBLICATION ABSTRACT]</description><subject>Bayesian analysis</subject><subject>Field study</subject><subject>Field tests</subject><subject>Geodetics</subject><issn>0949-7714</issn><issn>1432-1394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNotkM1KAzEYRYMoWKsP4C64Npq_yUyWtWgVCgrqOqT50ZRpMk3Sxby9U-rq8l0O34UDwC3BDwTj9rFgTCRGGHOEOW3QeAZmhDOKCJP8HMyw5BK1LeGX4KqU7US3TSdmwC_gkx5dCTrCnau_yUKfMuxDdDrfwyn2B92HOiKTYqlZT42F2m4Ppe5crFBHC0MtUA9DH4yuIUVYE1x9fMIhlXC8Q_y5Bhde98Xd_OccfL88fy1f0fp99bZcrJGhLa1ICuv5piHCC9txoTtvDXVUdhJ7Y7u22xChJWbGWU6lppw3ElursWWtwcSxObg7_R1y2h9cqWqbDjlOk0ow2QjGOzpB5ASZnErJzqshh53OoyJYHW2qk0012VRHm2pkf35baYY</recordid><startdate>200504</startdate><enddate>200504</enddate><creator>Zhu, J.</creator><creator>Santerre, R.</creator><creator>Chang, X.-W.</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>200504</creationdate><title>A Bayesian method for linear, inequality-constrained adjustment and its application to GPS positioning</title><author>Zhu, J. ; Santerre, R. ; Chang, X.-W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-96df4b516f6d846a8fdc2e29890fcd878b16a903ced429a244590dda0d37c01e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Bayesian analysis</topic><topic>Field study</topic><topic>Field tests</topic><topic>Geodetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, J.</creatorcontrib><creatorcontrib>Santerre, R.</creatorcontrib><creatorcontrib>Chang, X.-W.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of geodesy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, J.</au><au>Santerre, R.</au><au>Chang, X.-W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian method for linear, inequality-constrained adjustment and its application to GPS positioning</atitle><jtitle>Journal of geodesy</jtitle><date>2005-04</date><risdate>2005</risdate><volume>78</volume><issue>9</issue><spage>528</spage><epage>534</epage><pages>528-534</pages><issn>0949-7714</issn><eissn>1432-1394</eissn><abstract>One of the typical approaches to linear, inequality-constrained adjustment (LICA) is to solve a least-squares (LS) problem subject to the linear inequality constraints. The main disadvantage of this approach is that the statistical properties of the estimate are not easily determined and thus no general conclusions about the superiority of the estimate can be made. A new approach to solving the LICA problem is proposed. The linear inequality constraints are converted into prior information on the parameters with a uniform distribution, and consequently the LICA problem is reformulated into a Bayesian estimation problem. It is shown that the LS estimate of the LICA problem is identical to the Bayesian estimate based on the mode of the posterior distribution. Finally, the Bayesian method is applied to GPS positioning. Results for four field tests show that, when height information is used, the GPS phase ambiguity resolution can be improved significantly and the new approach is feasible.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer Nature B.V</pub><doi>10.1007/s00190-004-0425-y</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0949-7714
ispartof Journal of geodesy, 2005-04, Vol.78 (9), p.528-534
issn 0949-7714
1432-1394
language eng
recordid cdi_proquest_journals_639563482
source Springer Nature - Complete Springer Journals
subjects Bayesian analysis
Field study
Field tests
Geodetics
title A Bayesian method for linear, inequality-constrained adjustment and its application to GPS positioning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20method%20for%20linear,%20inequality-constrained%20adjustment%20and%20its%20application%20to%20GPS%20positioning&rft.jtitle=Journal%20of%20geodesy&rft.au=Zhu,%20J.&rft.date=2005-04&rft.volume=78&rft.issue=9&rft.spage=528&rft.epage=534&rft.pages=528-534&rft.issn=0949-7714&rft.eissn=1432-1394&rft_id=info:doi/10.1007/s00190-004-0425-y&rft_dat=%3Cproquest_cross%3E2088730401%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=639563482&rft_id=info:pmid/&rfr_iscdi=true