Gross error compensation for gravity field analysis based on kinematic orbit data
This paper aims at a comparative study of several measures to compensate for gross errors in kinematic orbit data. It starts with a simulation study on the influence of a single outlier in the orbit data on the gravity field solution. It is shown that even a single outlier can degrade the resulting...
Gespeichert in:
Veröffentlicht in: | Journal of geodesy 2006-07, Vol.80 (4), p.184-198 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 198 |
---|---|
container_issue | 4 |
container_start_page | 184 |
container_title | Journal of geodesy |
container_volume | 80 |
creator | GÖTZELMANN, M KELLER, W REUBELT, T |
description | This paper aims at a comparative study of several measures to compensate for gross errors in kinematic orbit data. It starts with a simulation study on the influence of a single outlier in the orbit data on the gravity field solution. It is shown that even a single outlier can degrade the resulting gravity field solution considerably. To compensate for outliers, two different strategies are investigated: wavelet filters, which detect and eliminate gross errors, and robust estimators, which due to an iterative downweighting gradually ignore those observations that lead to large residuals. Both methods are applied in the scope of the analysis of a 2-year kinematic CHAMP (challenging minisatellite payload) orbit data set. In various real data studies, robust estimators outperform wavelet filters in terms of resolution of the derived gravity field solution. This superior performance is at the cost of computational load, as robust estimators are implemented iteratively and require the solution of large sets of linear equations several times.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/s00190-006-0061-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_638155366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088617731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-38399fc9393dff6f894b37b5dd48a1478e0fadc0d95edcc4860a997ff1f0ed0a3</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWKsfwFsQPK5OmuwmOUrRKhRE0HOYzR9J3e7WZCv025ulgodhYPi9x5tHyDWDOwYg7zMA01ABNNOwSp-QGRN8UTGuxSmZgRa6kpKJc3KR86bQslbNjLyt0pAz9SkNidphu_N9xjEOPQ3l8JnwJ44HGqLvHMUeu0OOmbaYvaOF-Yq93xbc0iG1caQOR7wkZwG77K_-9px8PD2-L5-r9evqZfmwriyHxVhxxbUOVnPNXQhNUFq0XLa1c0IhE1J5COgsOF17Z61QDaDWMgQWwDtAPic3R99dGr73Po9mM-xTiZhNwxWra940BWJHyE5vJh_MLsUtpoNhYKbizLE4U0qbhhldNLd_xpgtdiFhb2P-F0qtFnWJ_ws7w262</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>638155366</pqid></control><display><type>article</type><title>Gross error compensation for gravity field analysis based on kinematic orbit data</title><source>Springer Nature - Complete Springer Journals</source><creator>GÖTZELMANN, M ; KELLER, W ; REUBELT, T</creator><creatorcontrib>GÖTZELMANN, M ; KELLER, W ; REUBELT, T</creatorcontrib><description>This paper aims at a comparative study of several measures to compensate for gross errors in kinematic orbit data. It starts with a simulation study on the influence of a single outlier in the orbit data on the gravity field solution. It is shown that even a single outlier can degrade the resulting gravity field solution considerably. To compensate for outliers, two different strategies are investigated: wavelet filters, which detect and eliminate gross errors, and robust estimators, which due to an iterative downweighting gradually ignore those observations that lead to large residuals. Both methods are applied in the scope of the analysis of a 2-year kinematic CHAMP (challenging minisatellite payload) orbit data set. In various real data studies, robust estimators outperform wavelet filters in terms of resolution of the derived gravity field solution. This superior performance is at the cost of computational load, as robust estimators are implemented iteratively and require the solution of large sets of linear equations several times.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0949-7714</identifier><identifier>EISSN: 1432-1394</identifier><identifier>DOI: 10.1007/s00190-006-0061-9</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Comparative studies ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Filters ; Geodetics ; Internal geophysics ; Mathematical models ; Solid-earth geophysics, tectonophysics, gravimetry ; Studies</subject><ispartof>Journal of geodesy, 2006-07, Vol.80 (4), p.184-198</ispartof><rights>2006 INIST-CNRS</rights><rights>Springer-Verlag 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-38399fc9393dff6f894b37b5dd48a1478e0fadc0d95edcc4860a997ff1f0ed0a3</citedby><cites>FETCH-LOGICAL-c302t-38399fc9393dff6f894b37b5dd48a1478e0fadc0d95edcc4860a997ff1f0ed0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17982538$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GÖTZELMANN, M</creatorcontrib><creatorcontrib>KELLER, W</creatorcontrib><creatorcontrib>REUBELT, T</creatorcontrib><title>Gross error compensation for gravity field analysis based on kinematic orbit data</title><title>Journal of geodesy</title><description>This paper aims at a comparative study of several measures to compensate for gross errors in kinematic orbit data. It starts with a simulation study on the influence of a single outlier in the orbit data on the gravity field solution. It is shown that even a single outlier can degrade the resulting gravity field solution considerably. To compensate for outliers, two different strategies are investigated: wavelet filters, which detect and eliminate gross errors, and robust estimators, which due to an iterative downweighting gradually ignore those observations that lead to large residuals. Both methods are applied in the scope of the analysis of a 2-year kinematic CHAMP (challenging minisatellite payload) orbit data set. In various real data studies, robust estimators outperform wavelet filters in terms of resolution of the derived gravity field solution. This superior performance is at the cost of computational load, as robust estimators are implemented iteratively and require the solution of large sets of linear equations several times.[PUBLICATION ABSTRACT]</description><subject>Comparative studies</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Filters</subject><subject>Geodetics</subject><subject>Internal geophysics</subject><subject>Mathematical models</subject><subject>Solid-earth geophysics, tectonophysics, gravimetry</subject><subject>Studies</subject><issn>0949-7714</issn><issn>1432-1394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkE9LAzEQxYMoWKsfwFsQPK5OmuwmOUrRKhRE0HOYzR9J3e7WZCv025ulgodhYPi9x5tHyDWDOwYg7zMA01ABNNOwSp-QGRN8UTGuxSmZgRa6kpKJc3KR86bQslbNjLyt0pAz9SkNidphu_N9xjEOPQ3l8JnwJ44HGqLvHMUeu0OOmbaYvaOF-Yq93xbc0iG1caQOR7wkZwG77K_-9px8PD2-L5-r9evqZfmwriyHxVhxxbUOVnPNXQhNUFq0XLa1c0IhE1J5COgsOF17Z61QDaDWMgQWwDtAPic3R99dGr73Po9mM-xTiZhNwxWra940BWJHyE5vJh_MLsUtpoNhYKbizLE4U0qbhhldNLd_xpgtdiFhb2P-F0qtFnWJ_ws7w262</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>GÖTZELMANN, M</creator><creator>KELLER, W</creator><creator>REUBELT, T</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20060701</creationdate><title>Gross error compensation for gravity field analysis based on kinematic orbit data</title><author>GÖTZELMANN, M ; KELLER, W ; REUBELT, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-38399fc9393dff6f894b37b5dd48a1478e0fadc0d95edcc4860a997ff1f0ed0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Comparative studies</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Filters</topic><topic>Geodetics</topic><topic>Internal geophysics</topic><topic>Mathematical models</topic><topic>Solid-earth geophysics, tectonophysics, gravimetry</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GÖTZELMANN, M</creatorcontrib><creatorcontrib>KELLER, W</creatorcontrib><creatorcontrib>REUBELT, T</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of geodesy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GÖTZELMANN, M</au><au>KELLER, W</au><au>REUBELT, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gross error compensation for gravity field analysis based on kinematic orbit data</atitle><jtitle>Journal of geodesy</jtitle><date>2006-07-01</date><risdate>2006</risdate><volume>80</volume><issue>4</issue><spage>184</spage><epage>198</epage><pages>184-198</pages><issn>0949-7714</issn><eissn>1432-1394</eissn><abstract>This paper aims at a comparative study of several measures to compensate for gross errors in kinematic orbit data. It starts with a simulation study on the influence of a single outlier in the orbit data on the gravity field solution. It is shown that even a single outlier can degrade the resulting gravity field solution considerably. To compensate for outliers, two different strategies are investigated: wavelet filters, which detect and eliminate gross errors, and robust estimators, which due to an iterative downweighting gradually ignore those observations that lead to large residuals. Both methods are applied in the scope of the analysis of a 2-year kinematic CHAMP (challenging minisatellite payload) orbit data set. In various real data studies, robust estimators outperform wavelet filters in terms of resolution of the derived gravity field solution. This superior performance is at the cost of computational load, as robust estimators are implemented iteratively and require the solution of large sets of linear equations several times.[PUBLICATION ABSTRACT]</abstract><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s00190-006-0061-9</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0949-7714 |
ispartof | Journal of geodesy, 2006-07, Vol.80 (4), p.184-198 |
issn | 0949-7714 1432-1394 |
language | eng |
recordid | cdi_proquest_journals_638155366 |
source | Springer Nature - Complete Springer Journals |
subjects | Comparative studies Earth sciences Earth, ocean, space Exact sciences and technology Filters Geodetics Internal geophysics Mathematical models Solid-earth geophysics, tectonophysics, gravimetry Studies |
title | Gross error compensation for gravity field analysis based on kinematic orbit data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gross%20error%20compensation%20for%20gravity%20field%20analysis%20based%20on%20kinematic%20orbit%20data&rft.jtitle=Journal%20of%20geodesy&rft.au=G%C3%96TZELMANN,%20M&rft.date=2006-07-01&rft.volume=80&rft.issue=4&rft.spage=184&rft.epage=198&rft.pages=184-198&rft.issn=0949-7714&rft.eissn=1432-1394&rft_id=info:doi/10.1007/s00190-006-0061-9&rft_dat=%3Cproquest_cross%3E2088617731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=638155366&rft_id=info:pmid/&rfr_iscdi=true |