Gross error compensation for gravity field analysis based on kinematic orbit data

This paper aims at a comparative study of several measures to compensate for gross errors in kinematic orbit data. It starts with a simulation study on the influence of a single outlier in the orbit data on the gravity field solution. It is shown that even a single outlier can degrade the resulting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geodesy 2006-07, Vol.80 (4), p.184-198
Hauptverfasser: GÖTZELMANN, M, KELLER, W, REUBELT, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue 4
container_start_page 184
container_title Journal of geodesy
container_volume 80
creator GÖTZELMANN, M
KELLER, W
REUBELT, T
description This paper aims at a comparative study of several measures to compensate for gross errors in kinematic orbit data. It starts with a simulation study on the influence of a single outlier in the orbit data on the gravity field solution. It is shown that even a single outlier can degrade the resulting gravity field solution considerably. To compensate for outliers, two different strategies are investigated: wavelet filters, which detect and eliminate gross errors, and robust estimators, which due to an iterative downweighting gradually ignore those observations that lead to large residuals. Both methods are applied in the scope of the analysis of a 2-year kinematic CHAMP (challenging minisatellite payload) orbit data set. In various real data studies, robust estimators outperform wavelet filters in terms of resolution of the derived gravity field solution. This superior performance is at the cost of computational load, as robust estimators are implemented iteratively and require the solution of large sets of linear equations several times.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s00190-006-0061-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_638155366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2088617731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-38399fc9393dff6f894b37b5dd48a1478e0fadc0d95edcc4860a997ff1f0ed0a3</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWKsfwFsQPK5OmuwmOUrRKhRE0HOYzR9J3e7WZCv025ulgodhYPi9x5tHyDWDOwYg7zMA01ABNNOwSp-QGRN8UTGuxSmZgRa6kpKJc3KR86bQslbNjLyt0pAz9SkNidphu_N9xjEOPQ3l8JnwJ44HGqLvHMUeu0OOmbaYvaOF-Yq93xbc0iG1caQOR7wkZwG77K_-9px8PD2-L5-r9evqZfmwriyHxVhxxbUOVnPNXQhNUFq0XLa1c0IhE1J5COgsOF17Z61QDaDWMgQWwDtAPic3R99dGr73Po9mM-xTiZhNwxWra940BWJHyE5vJh_MLsUtpoNhYKbizLE4U0qbhhldNLd_xpgtdiFhb2P-F0qtFnWJ_ws7w262</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>638155366</pqid></control><display><type>article</type><title>Gross error compensation for gravity field analysis based on kinematic orbit data</title><source>Springer Nature - Complete Springer Journals</source><creator>GÖTZELMANN, M ; KELLER, W ; REUBELT, T</creator><creatorcontrib>GÖTZELMANN, M ; KELLER, W ; REUBELT, T</creatorcontrib><description>This paper aims at a comparative study of several measures to compensate for gross errors in kinematic orbit data. It starts with a simulation study on the influence of a single outlier in the orbit data on the gravity field solution. It is shown that even a single outlier can degrade the resulting gravity field solution considerably. To compensate for outliers, two different strategies are investigated: wavelet filters, which detect and eliminate gross errors, and robust estimators, which due to an iterative downweighting gradually ignore those observations that lead to large residuals. Both methods are applied in the scope of the analysis of a 2-year kinematic CHAMP (challenging minisatellite payload) orbit data set. In various real data studies, robust estimators outperform wavelet filters in terms of resolution of the derived gravity field solution. This superior performance is at the cost of computational load, as robust estimators are implemented iteratively and require the solution of large sets of linear equations several times.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0949-7714</identifier><identifier>EISSN: 1432-1394</identifier><identifier>DOI: 10.1007/s00190-006-0061-9</identifier><language>eng</language><publisher>Berlin: Springer</publisher><subject>Comparative studies ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Filters ; Geodetics ; Internal geophysics ; Mathematical models ; Solid-earth geophysics, tectonophysics, gravimetry ; Studies</subject><ispartof>Journal of geodesy, 2006-07, Vol.80 (4), p.184-198</ispartof><rights>2006 INIST-CNRS</rights><rights>Springer-Verlag 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-38399fc9393dff6f894b37b5dd48a1478e0fadc0d95edcc4860a997ff1f0ed0a3</citedby><cites>FETCH-LOGICAL-c302t-38399fc9393dff6f894b37b5dd48a1478e0fadc0d95edcc4860a997ff1f0ed0a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17982538$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>GÖTZELMANN, M</creatorcontrib><creatorcontrib>KELLER, W</creatorcontrib><creatorcontrib>REUBELT, T</creatorcontrib><title>Gross error compensation for gravity field analysis based on kinematic orbit data</title><title>Journal of geodesy</title><description>This paper aims at a comparative study of several measures to compensate for gross errors in kinematic orbit data. It starts with a simulation study on the influence of a single outlier in the orbit data on the gravity field solution. It is shown that even a single outlier can degrade the resulting gravity field solution considerably. To compensate for outliers, two different strategies are investigated: wavelet filters, which detect and eliminate gross errors, and robust estimators, which due to an iterative downweighting gradually ignore those observations that lead to large residuals. Both methods are applied in the scope of the analysis of a 2-year kinematic CHAMP (challenging minisatellite payload) orbit data set. In various real data studies, robust estimators outperform wavelet filters in terms of resolution of the derived gravity field solution. This superior performance is at the cost of computational load, as robust estimators are implemented iteratively and require the solution of large sets of linear equations several times.[PUBLICATION ABSTRACT]</description><subject>Comparative studies</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Filters</subject><subject>Geodetics</subject><subject>Internal geophysics</subject><subject>Mathematical models</subject><subject>Solid-earth geophysics, tectonophysics, gravimetry</subject><subject>Studies</subject><issn>0949-7714</issn><issn>1432-1394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkE9LAzEQxYMoWKsfwFsQPK5OmuwmOUrRKhRE0HOYzR9J3e7WZCv025ulgodhYPi9x5tHyDWDOwYg7zMA01ABNNOwSp-QGRN8UTGuxSmZgRa6kpKJc3KR86bQslbNjLyt0pAz9SkNidphu_N9xjEOPQ3l8JnwJ44HGqLvHMUeu0OOmbaYvaOF-Yq93xbc0iG1caQOR7wkZwG77K_-9px8PD2-L5-r9evqZfmwriyHxVhxxbUOVnPNXQhNUFq0XLa1c0IhE1J5COgsOF17Z61QDaDWMgQWwDtAPic3R99dGr73Po9mM-xTiZhNwxWra940BWJHyE5vJh_MLsUtpoNhYKbizLE4U0qbhhldNLd_xpgtdiFhb2P-F0qtFnWJ_ws7w262</recordid><startdate>20060701</startdate><enddate>20060701</enddate><creator>GÖTZELMANN, M</creator><creator>KELLER, W</creator><creator>REUBELT, T</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20060701</creationdate><title>Gross error compensation for gravity field analysis based on kinematic orbit data</title><author>GÖTZELMANN, M ; KELLER, W ; REUBELT, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-38399fc9393dff6f894b37b5dd48a1478e0fadc0d95edcc4860a997ff1f0ed0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Comparative studies</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Filters</topic><topic>Geodetics</topic><topic>Internal geophysics</topic><topic>Mathematical models</topic><topic>Solid-earth geophysics, tectonophysics, gravimetry</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>GÖTZELMANN, M</creatorcontrib><creatorcontrib>KELLER, W</creatorcontrib><creatorcontrib>REUBELT, T</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of geodesy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>GÖTZELMANN, M</au><au>KELLER, W</au><au>REUBELT, T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gross error compensation for gravity field analysis based on kinematic orbit data</atitle><jtitle>Journal of geodesy</jtitle><date>2006-07-01</date><risdate>2006</risdate><volume>80</volume><issue>4</issue><spage>184</spage><epage>198</epage><pages>184-198</pages><issn>0949-7714</issn><eissn>1432-1394</eissn><abstract>This paper aims at a comparative study of several measures to compensate for gross errors in kinematic orbit data. It starts with a simulation study on the influence of a single outlier in the orbit data on the gravity field solution. It is shown that even a single outlier can degrade the resulting gravity field solution considerably. To compensate for outliers, two different strategies are investigated: wavelet filters, which detect and eliminate gross errors, and robust estimators, which due to an iterative downweighting gradually ignore those observations that lead to large residuals. Both methods are applied in the scope of the analysis of a 2-year kinematic CHAMP (challenging minisatellite payload) orbit data set. In various real data studies, robust estimators outperform wavelet filters in terms of resolution of the derived gravity field solution. This superior performance is at the cost of computational load, as robust estimators are implemented iteratively and require the solution of large sets of linear equations several times.[PUBLICATION ABSTRACT]</abstract><cop>Berlin</cop><pub>Springer</pub><doi>10.1007/s00190-006-0061-9</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0949-7714
ispartof Journal of geodesy, 2006-07, Vol.80 (4), p.184-198
issn 0949-7714
1432-1394
language eng
recordid cdi_proquest_journals_638155366
source Springer Nature - Complete Springer Journals
subjects Comparative studies
Earth sciences
Earth, ocean, space
Exact sciences and technology
Filters
Geodetics
Internal geophysics
Mathematical models
Solid-earth geophysics, tectonophysics, gravimetry
Studies
title Gross error compensation for gravity field analysis based on kinematic orbit data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T13%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gross%20error%20compensation%20for%20gravity%20field%20analysis%20based%20on%20kinematic%20orbit%20data&rft.jtitle=Journal%20of%20geodesy&rft.au=G%C3%96TZELMANN,%20M&rft.date=2006-07-01&rft.volume=80&rft.issue=4&rft.spage=184&rft.epage=198&rft.pages=184-198&rft.issn=0949-7714&rft.eissn=1432-1394&rft_id=info:doi/10.1007/s00190-006-0061-9&rft_dat=%3Cproquest_cross%3E2088617731%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=638155366&rft_id=info:pmid/&rfr_iscdi=true