Multiple mutagenesis of the Candida rugosa LIP1 gene and optimum production of recombinant LIP1 expressed in Pichia pastoris
Candida rugosa lipase, a significant catalyst, had been widely employed to catalyze various chemical reactions such as non-specific, stereo-specific hydrolysis and esterification for industrial biocatalytic applications. Several isozymes encoded by the lip gene family, namely lip1 to lip7, possess d...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2005-04, Vol.67 (2), p.215-224 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 224 |
---|---|
container_issue | 2 |
container_start_page | 215 |
container_title | Applied microbiology and biotechnology |
container_volume | 67 |
creator | Chang, S.W Shieh, C. J Lee, G. C Shaw, J. F |
description | Candida rugosa lipase, a significant catalyst, had been widely employed to catalyze various chemical reactions such as non-specific, stereo-specific hydrolysis and esterification for industrial biocatalytic applications. Several isozymes encoded by the lip gene family, namely lip1 to lip7, possess distinct thermal stability and substrate specificity, among which the recombinant LIP1 showed a distinguished catalytic characterization. In this study, we utilized PCR to remove an unnecessary linker of pGAPZαC vector and used overlap extension PCR-based multiple site-directed mutagenesis to convert the 19 non-universal CTG-serine codons into universal TCT-serine codons and successfully express a highly active recombinant C. rugosa LIP1 in the Pichia expression system. Response surface methodology and 4-factor-5-level central composite rotatable design were adopted to evaluate the effects of growth parameters, such as temperature (21.6–38.4°C), glucose concentration (0.3–3.7%), yeast extract (0.16–1.84%), and pH (5.3–8.7) on the lipolytic activity of LIP1 and biomass of P. pastoris. Based on ridge max analysis, the optimum LIP1 production conditions were temperature, 24.1°C; glucose concentration, 2.6%; yeast extract, 1.4%; and pH 7.6. The predicted value of lipolytic activity was 246.9±39.7 U/ml, and the actual value was 253.3±18.8 U/ml. The lipolytic activity of the recombinant LIP1 resulting from the present work is twofold higher than that achieved by a methanol induction system. |
doi_str_mv | 10.1007/s00253-004-1815-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_622545261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087473201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-f38a57fdac15501b9ddaa540dcad2dbcadc64752383d594d888fc7c87182636c3</originalsourceid><addsrcrecordid>eNpFkV1rHCEUhqU0NJu0P6A3rRRyOc1RR8e9LEs_AlsSaHMtZ9XZGHbGqTrQhP74usxCbjwgz3vO8ZGQ9ww-M4DuOgNwKRqAtmGayeb5FVmxVvAGFGtfkxWwTjadXOtzcpHzIwDjWqk35JxJueaaqxX593M-lDAdPB3mgns_-hwyjT0tD55ucHTBIU3zPmak25s7Ro8Irfc0TiUM80CnFN1sS4jjMZa8jcMujDiWhfd_p-Rz9o6Gkd4F-xCQTphLTCG_JWc9HrJ_d6qX5P7b19-bH8329vvN5su2sS1npemFRtn1Dm3dG9hu7RyibMFZdNzt6mlV20kutHBy3TqtdW87qztWnyiUFZfk09K37vpn9rmYxzinsY40inPZSq5YhdgC2RRzTr43UwoDpifDwBx1m0W3qbrNUbd5rpkPp8bzbvDuJXHyW4GrE4DZ4qFPONqQXzjVCcklVO7jwvUYDe6rG3P_iwNTUD9NcyHEf1RmkmY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>622545261</pqid></control><display><type>article</type><title>Multiple mutagenesis of the Candida rugosa LIP1 gene and optimum production of recombinant LIP1 expressed in Pichia pastoris</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chang, S.W ; Shieh, C. J ; Lee, G. C ; Shaw, J. F</creator><creatorcontrib>Chang, S.W ; Shieh, C. J ; Lee, G. C ; Shaw, J. F</creatorcontrib><description>Candida rugosa lipase, a significant catalyst, had been widely employed to catalyze various chemical reactions such as non-specific, stereo-specific hydrolysis and esterification for industrial biocatalytic applications. Several isozymes encoded by the lip gene family, namely lip1 to lip7, possess distinct thermal stability and substrate specificity, among which the recombinant LIP1 showed a distinguished catalytic characterization. In this study, we utilized PCR to remove an unnecessary linker of pGAPZαC vector and used overlap extension PCR-based multiple site-directed mutagenesis to convert the 19 non-universal CTG-serine codons into universal TCT-serine codons and successfully express a highly active recombinant C. rugosa LIP1 in the Pichia expression system. Response surface methodology and 4-factor-5-level central composite rotatable design were adopted to evaluate the effects of growth parameters, such as temperature (21.6–38.4°C), glucose concentration (0.3–3.7%), yeast extract (0.16–1.84%), and pH (5.3–8.7) on the lipolytic activity of LIP1 and biomass of P. pastoris. Based on ridge max analysis, the optimum LIP1 production conditions were temperature, 24.1°C; glucose concentration, 2.6%; yeast extract, 1.4%; and pH 7.6. The predicted value of lipolytic activity was 246.9±39.7 U/ml, and the actual value was 253.3±18.8 U/ml. The lipolytic activity of the recombinant LIP1 resulting from the present work is twofold higher than that achieved by a methanol induction system.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-004-1815-z</identifier><identifier>PMID: 15592826</identifier><identifier>CODEN: AMBIDG</identifier><language>eng</language><publisher>Berlin: Springer-Verlag</publisher><subject>Base Sequence ; Biological and medical sciences ; biomass ; Biotechnology ; Candida - enzymology ; Candida rugosa ; catalysts ; Chemical reactions ; codons ; Enzymes ; esterification ; Fundamental and applied biological sciences. Psychology ; genes ; glucose ; hydrolysis ; isozymes ; Lipase - biosynthesis ; Lipase - genetics ; lipolysis ; methanol ; Methods. Procedures. Technologies ; Microbiology ; Molecular Sequence Data ; Mutagenesis ; PCR ; Pichia - genetics ; Pichia pastoris ; polymerase chain reaction ; Protein engineering ; Recombinant Proteins - biosynthesis ; Regression Analysis ; response surface methodology ; serine ; site-directed mutagenesis ; substrate specificity ; temperature ; thermal stability ; Yeast ; yeast extract ; Yeasts</subject><ispartof>Applied microbiology and biotechnology, 2005-04, Vol.67 (2), p.215-224</ispartof><rights>2005 INIST-CNRS</rights><rights>Springer-Verlag 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-f38a57fdac15501b9ddaa540dcad2dbcadc64752383d594d888fc7c87182636c3</citedby><cites>FETCH-LOGICAL-c421t-f38a57fdac15501b9ddaa540dcad2dbcadc64752383d594d888fc7c87182636c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16735250$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15592826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, S.W</creatorcontrib><creatorcontrib>Shieh, C. J</creatorcontrib><creatorcontrib>Lee, G. C</creatorcontrib><creatorcontrib>Shaw, J. F</creatorcontrib><title>Multiple mutagenesis of the Candida rugosa LIP1 gene and optimum production of recombinant LIP1 expressed in Pichia pastoris</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><description>Candida rugosa lipase, a significant catalyst, had been widely employed to catalyze various chemical reactions such as non-specific, stereo-specific hydrolysis and esterification for industrial biocatalytic applications. Several isozymes encoded by the lip gene family, namely lip1 to lip7, possess distinct thermal stability and substrate specificity, among which the recombinant LIP1 showed a distinguished catalytic characterization. In this study, we utilized PCR to remove an unnecessary linker of pGAPZαC vector and used overlap extension PCR-based multiple site-directed mutagenesis to convert the 19 non-universal CTG-serine codons into universal TCT-serine codons and successfully express a highly active recombinant C. rugosa LIP1 in the Pichia expression system. Response surface methodology and 4-factor-5-level central composite rotatable design were adopted to evaluate the effects of growth parameters, such as temperature (21.6–38.4°C), glucose concentration (0.3–3.7%), yeast extract (0.16–1.84%), and pH (5.3–8.7) on the lipolytic activity of LIP1 and biomass of P. pastoris. Based on ridge max analysis, the optimum LIP1 production conditions were temperature, 24.1°C; glucose concentration, 2.6%; yeast extract, 1.4%; and pH 7.6. The predicted value of lipolytic activity was 246.9±39.7 U/ml, and the actual value was 253.3±18.8 U/ml. The lipolytic activity of the recombinant LIP1 resulting from the present work is twofold higher than that achieved by a methanol induction system.</description><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>biomass</subject><subject>Biotechnology</subject><subject>Candida - enzymology</subject><subject>Candida rugosa</subject><subject>catalysts</subject><subject>Chemical reactions</subject><subject>codons</subject><subject>Enzymes</subject><subject>esterification</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>genes</subject><subject>glucose</subject><subject>hydrolysis</subject><subject>isozymes</subject><subject>Lipase - biosynthesis</subject><subject>Lipase - genetics</subject><subject>lipolysis</subject><subject>methanol</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbiology</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>PCR</subject><subject>Pichia - genetics</subject><subject>Pichia pastoris</subject><subject>polymerase chain reaction</subject><subject>Protein engineering</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Regression Analysis</subject><subject>response surface methodology</subject><subject>serine</subject><subject>site-directed mutagenesis</subject><subject>substrate specificity</subject><subject>temperature</subject><subject>thermal stability</subject><subject>Yeast</subject><subject>yeast extract</subject><subject>Yeasts</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkV1rHCEUhqU0NJu0P6A3rRRyOc1RR8e9LEs_AlsSaHMtZ9XZGHbGqTrQhP74usxCbjwgz3vO8ZGQ9ww-M4DuOgNwKRqAtmGayeb5FVmxVvAGFGtfkxWwTjadXOtzcpHzIwDjWqk35JxJueaaqxX593M-lDAdPB3mgns_-hwyjT0tD55ucHTBIU3zPmak25s7Ro8Irfc0TiUM80CnFN1sS4jjMZa8jcMujDiWhfd_p-Rz9o6Gkd4F-xCQTphLTCG_JWc9HrJ_d6qX5P7b19-bH8329vvN5su2sS1npemFRtn1Dm3dG9hu7RyibMFZdNzt6mlV20kutHBy3TqtdW87qztWnyiUFZfk09K37vpn9rmYxzinsY40inPZSq5YhdgC2RRzTr43UwoDpifDwBx1m0W3qbrNUbd5rpkPp8bzbvDuJXHyW4GrE4DZ4qFPONqQXzjVCcklVO7jwvUYDe6rG3P_iwNTUD9NcyHEf1RmkmY</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Chang, S.W</creator><creator>Shieh, C. J</creator><creator>Lee, G. C</creator><creator>Shaw, J. F</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20050401</creationdate><title>Multiple mutagenesis of the Candida rugosa LIP1 gene and optimum production of recombinant LIP1 expressed in Pichia pastoris</title><author>Chang, S.W ; Shieh, C. J ; Lee, G. C ; Shaw, J. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-f38a57fdac15501b9ddaa540dcad2dbcadc64752383d594d888fc7c87182636c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>biomass</topic><topic>Biotechnology</topic><topic>Candida - enzymology</topic><topic>Candida rugosa</topic><topic>catalysts</topic><topic>Chemical reactions</topic><topic>codons</topic><topic>Enzymes</topic><topic>esterification</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>genes</topic><topic>glucose</topic><topic>hydrolysis</topic><topic>isozymes</topic><topic>Lipase - biosynthesis</topic><topic>Lipase - genetics</topic><topic>lipolysis</topic><topic>methanol</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbiology</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>PCR</topic><topic>Pichia - genetics</topic><topic>Pichia pastoris</topic><topic>polymerase chain reaction</topic><topic>Protein engineering</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Regression Analysis</topic><topic>response surface methodology</topic><topic>serine</topic><topic>site-directed mutagenesis</topic><topic>substrate specificity</topic><topic>temperature</topic><topic>thermal stability</topic><topic>Yeast</topic><topic>yeast extract</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, S.W</creatorcontrib><creatorcontrib>Shieh, C. J</creatorcontrib><creatorcontrib>Lee, G. C</creatorcontrib><creatorcontrib>Shaw, J. F</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, S.W</au><au>Shieh, C. J</au><au>Lee, G. C</au><au>Shaw, J. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple mutagenesis of the Candida rugosa LIP1 gene and optimum production of recombinant LIP1 expressed in Pichia pastoris</atitle><jtitle>Applied microbiology and biotechnology</jtitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2005-04-01</date><risdate>2005</risdate><volume>67</volume><issue>2</issue><spage>215</spage><epage>224</epage><pages>215-224</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><coden>AMBIDG</coden><abstract>Candida rugosa lipase, a significant catalyst, had been widely employed to catalyze various chemical reactions such as non-specific, stereo-specific hydrolysis and esterification for industrial biocatalytic applications. Several isozymes encoded by the lip gene family, namely lip1 to lip7, possess distinct thermal stability and substrate specificity, among which the recombinant LIP1 showed a distinguished catalytic characterization. In this study, we utilized PCR to remove an unnecessary linker of pGAPZαC vector and used overlap extension PCR-based multiple site-directed mutagenesis to convert the 19 non-universal CTG-serine codons into universal TCT-serine codons and successfully express a highly active recombinant C. rugosa LIP1 in the Pichia expression system. Response surface methodology and 4-factor-5-level central composite rotatable design were adopted to evaluate the effects of growth parameters, such as temperature (21.6–38.4°C), glucose concentration (0.3–3.7%), yeast extract (0.16–1.84%), and pH (5.3–8.7) on the lipolytic activity of LIP1 and biomass of P. pastoris. Based on ridge max analysis, the optimum LIP1 production conditions were temperature, 24.1°C; glucose concentration, 2.6%; yeast extract, 1.4%; and pH 7.6. The predicted value of lipolytic activity was 246.9±39.7 U/ml, and the actual value was 253.3±18.8 U/ml. The lipolytic activity of the recombinant LIP1 resulting from the present work is twofold higher than that achieved by a methanol induction system.</abstract><cop>Berlin</cop><pub>Springer-Verlag</pub><pmid>15592826</pmid><doi>10.1007/s00253-004-1815-z</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2005-04, Vol.67 (2), p.215-224 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_journals_622545261 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Base Sequence Biological and medical sciences biomass Biotechnology Candida - enzymology Candida rugosa catalysts Chemical reactions codons Enzymes esterification Fundamental and applied biological sciences. Psychology genes glucose hydrolysis isozymes Lipase - biosynthesis Lipase - genetics lipolysis methanol Methods. Procedures. Technologies Microbiology Molecular Sequence Data Mutagenesis PCR Pichia - genetics Pichia pastoris polymerase chain reaction Protein engineering Recombinant Proteins - biosynthesis Regression Analysis response surface methodology serine site-directed mutagenesis substrate specificity temperature thermal stability Yeast yeast extract Yeasts |
title | Multiple mutagenesis of the Candida rugosa LIP1 gene and optimum production of recombinant LIP1 expressed in Pichia pastoris |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A45%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20mutagenesis%20of%20the%20Candida%20rugosa%20LIP1%20gene%20and%20optimum%20production%20of%20recombinant%20LIP1%20expressed%20in%20Pichia%20pastoris&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Chang,%20S.W&rft.date=2005-04-01&rft.volume=67&rft.issue=2&rft.spage=215&rft.epage=224&rft.pages=215-224&rft.issn=0175-7598&rft.eissn=1432-0614&rft.coden=AMBIDG&rft_id=info:doi/10.1007/s00253-004-1815-z&rft_dat=%3Cproquest_cross%3E2087473201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=622545261&rft_id=info:pmid/15592826&rfr_iscdi=true |