Multiple mutagenesis of the Candida rugosa LIP1 gene and optimum production of recombinant LIP1 expressed in Pichia pastoris

Candida rugosa lipase, a significant catalyst, had been widely employed to catalyze various chemical reactions such as non-specific, stereo-specific hydrolysis and esterification for industrial biocatalytic applications. Several isozymes encoded by the lip gene family, namely lip1 to lip7, possess d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2005-04, Vol.67 (2), p.215-224
Hauptverfasser: Chang, S.W, Shieh, C. J, Lee, G. C, Shaw, J. F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224
container_issue 2
container_start_page 215
container_title Applied microbiology and biotechnology
container_volume 67
creator Chang, S.W
Shieh, C. J
Lee, G. C
Shaw, J. F
description Candida rugosa lipase, a significant catalyst, had been widely employed to catalyze various chemical reactions such as non-specific, stereo-specific hydrolysis and esterification for industrial biocatalytic applications. Several isozymes encoded by the lip gene family, namely lip1 to lip7, possess distinct thermal stability and substrate specificity, among which the recombinant LIP1 showed a distinguished catalytic characterization. In this study, we utilized PCR to remove an unnecessary linker of pGAPZαC vector and used overlap extension PCR-based multiple site-directed mutagenesis to convert the 19 non-universal CTG-serine codons into universal TCT-serine codons and successfully express a highly active recombinant C. rugosa LIP1 in the Pichia expression system. Response surface methodology and 4-factor-5-level central composite rotatable design were adopted to evaluate the effects of growth parameters, such as temperature (21.6–38.4°C), glucose concentration (0.3–3.7%), yeast extract (0.16–1.84%), and pH (5.3–8.7) on the lipolytic activity of LIP1 and biomass of P. pastoris. Based on ridge max analysis, the optimum LIP1 production conditions were temperature, 24.1°C; glucose concentration, 2.6%; yeast extract, 1.4%; and pH 7.6. The predicted value of lipolytic activity was 246.9±39.7 U/ml, and the actual value was 253.3±18.8 U/ml. The lipolytic activity of the recombinant LIP1 resulting from the present work is twofold higher than that achieved by a methanol induction system.
doi_str_mv 10.1007/s00253-004-1815-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_622545261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087473201</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-f38a57fdac15501b9ddaa540dcad2dbcadc64752383d594d888fc7c87182636c3</originalsourceid><addsrcrecordid>eNpFkV1rHCEUhqU0NJu0P6A3rRRyOc1RR8e9LEs_AlsSaHMtZ9XZGHbGqTrQhP74usxCbjwgz3vO8ZGQ9ww-M4DuOgNwKRqAtmGayeb5FVmxVvAGFGtfkxWwTjadXOtzcpHzIwDjWqk35JxJueaaqxX593M-lDAdPB3mgns_-hwyjT0tD55ucHTBIU3zPmak25s7Ro8Irfc0TiUM80CnFN1sS4jjMZa8jcMujDiWhfd_p-Rz9o6Gkd4F-xCQTphLTCG_JWc9HrJ_d6qX5P7b19-bH8329vvN5su2sS1npemFRtn1Dm3dG9hu7RyibMFZdNzt6mlV20kutHBy3TqtdW87qztWnyiUFZfk09K37vpn9rmYxzinsY40inPZSq5YhdgC2RRzTr43UwoDpifDwBx1m0W3qbrNUbd5rpkPp8bzbvDuJXHyW4GrE4DZ4qFPONqQXzjVCcklVO7jwvUYDe6rG3P_iwNTUD9NcyHEf1RmkmY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>622545261</pqid></control><display><type>article</type><title>Multiple mutagenesis of the Candida rugosa LIP1 gene and optimum production of recombinant LIP1 expressed in Pichia pastoris</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chang, S.W ; Shieh, C. J ; Lee, G. C ; Shaw, J. F</creator><creatorcontrib>Chang, S.W ; Shieh, C. J ; Lee, G. C ; Shaw, J. F</creatorcontrib><description>Candida rugosa lipase, a significant catalyst, had been widely employed to catalyze various chemical reactions such as non-specific, stereo-specific hydrolysis and esterification for industrial biocatalytic applications. Several isozymes encoded by the lip gene family, namely lip1 to lip7, possess distinct thermal stability and substrate specificity, among which the recombinant LIP1 showed a distinguished catalytic characterization. In this study, we utilized PCR to remove an unnecessary linker of pGAPZαC vector and used overlap extension PCR-based multiple site-directed mutagenesis to convert the 19 non-universal CTG-serine codons into universal TCT-serine codons and successfully express a highly active recombinant C. rugosa LIP1 in the Pichia expression system. Response surface methodology and 4-factor-5-level central composite rotatable design were adopted to evaluate the effects of growth parameters, such as temperature (21.6–38.4°C), glucose concentration (0.3–3.7%), yeast extract (0.16–1.84%), and pH (5.3–8.7) on the lipolytic activity of LIP1 and biomass of P. pastoris. Based on ridge max analysis, the optimum LIP1 production conditions were temperature, 24.1°C; glucose concentration, 2.6%; yeast extract, 1.4%; and pH 7.6. The predicted value of lipolytic activity was 246.9±39.7 U/ml, and the actual value was 253.3±18.8 U/ml. The lipolytic activity of the recombinant LIP1 resulting from the present work is twofold higher than that achieved by a methanol induction system.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-004-1815-z</identifier><identifier>PMID: 15592826</identifier><identifier>CODEN: AMBIDG</identifier><language>eng</language><publisher>Berlin: Springer-Verlag</publisher><subject>Base Sequence ; Biological and medical sciences ; biomass ; Biotechnology ; Candida - enzymology ; Candida rugosa ; catalysts ; Chemical reactions ; codons ; Enzymes ; esterification ; Fundamental and applied biological sciences. Psychology ; genes ; glucose ; hydrolysis ; isozymes ; Lipase - biosynthesis ; Lipase - genetics ; lipolysis ; methanol ; Methods. Procedures. Technologies ; Microbiology ; Molecular Sequence Data ; Mutagenesis ; PCR ; Pichia - genetics ; Pichia pastoris ; polymerase chain reaction ; Protein engineering ; Recombinant Proteins - biosynthesis ; Regression Analysis ; response surface methodology ; serine ; site-directed mutagenesis ; substrate specificity ; temperature ; thermal stability ; Yeast ; yeast extract ; Yeasts</subject><ispartof>Applied microbiology and biotechnology, 2005-04, Vol.67 (2), p.215-224</ispartof><rights>2005 INIST-CNRS</rights><rights>Springer-Verlag 2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-f38a57fdac15501b9ddaa540dcad2dbcadc64752383d594d888fc7c87182636c3</citedby><cites>FETCH-LOGICAL-c421t-f38a57fdac15501b9ddaa540dcad2dbcadc64752383d594d888fc7c87182636c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16735250$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15592826$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chang, S.W</creatorcontrib><creatorcontrib>Shieh, C. J</creatorcontrib><creatorcontrib>Lee, G. C</creatorcontrib><creatorcontrib>Shaw, J. F</creatorcontrib><title>Multiple mutagenesis of the Candida rugosa LIP1 gene and optimum production of recombinant LIP1 expressed in Pichia pastoris</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><description>Candida rugosa lipase, a significant catalyst, had been widely employed to catalyze various chemical reactions such as non-specific, stereo-specific hydrolysis and esterification for industrial biocatalytic applications. Several isozymes encoded by the lip gene family, namely lip1 to lip7, possess distinct thermal stability and substrate specificity, among which the recombinant LIP1 showed a distinguished catalytic characterization. In this study, we utilized PCR to remove an unnecessary linker of pGAPZαC vector and used overlap extension PCR-based multiple site-directed mutagenesis to convert the 19 non-universal CTG-serine codons into universal TCT-serine codons and successfully express a highly active recombinant C. rugosa LIP1 in the Pichia expression system. Response surface methodology and 4-factor-5-level central composite rotatable design were adopted to evaluate the effects of growth parameters, such as temperature (21.6–38.4°C), glucose concentration (0.3–3.7%), yeast extract (0.16–1.84%), and pH (5.3–8.7) on the lipolytic activity of LIP1 and biomass of P. pastoris. Based on ridge max analysis, the optimum LIP1 production conditions were temperature, 24.1°C; glucose concentration, 2.6%; yeast extract, 1.4%; and pH 7.6. The predicted value of lipolytic activity was 246.9±39.7 U/ml, and the actual value was 253.3±18.8 U/ml. The lipolytic activity of the recombinant LIP1 resulting from the present work is twofold higher than that achieved by a methanol induction system.</description><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>biomass</subject><subject>Biotechnology</subject><subject>Candida - enzymology</subject><subject>Candida rugosa</subject><subject>catalysts</subject><subject>Chemical reactions</subject><subject>codons</subject><subject>Enzymes</subject><subject>esterification</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>genes</subject><subject>glucose</subject><subject>hydrolysis</subject><subject>isozymes</subject><subject>Lipase - biosynthesis</subject><subject>Lipase - genetics</subject><subject>lipolysis</subject><subject>methanol</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbiology</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>PCR</subject><subject>Pichia - genetics</subject><subject>Pichia pastoris</subject><subject>polymerase chain reaction</subject><subject>Protein engineering</subject><subject>Recombinant Proteins - biosynthesis</subject><subject>Regression Analysis</subject><subject>response surface methodology</subject><subject>serine</subject><subject>site-directed mutagenesis</subject><subject>substrate specificity</subject><subject>temperature</subject><subject>thermal stability</subject><subject>Yeast</subject><subject>yeast extract</subject><subject>Yeasts</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkV1rHCEUhqU0NJu0P6A3rRRyOc1RR8e9LEs_AlsSaHMtZ9XZGHbGqTrQhP74usxCbjwgz3vO8ZGQ9ww-M4DuOgNwKRqAtmGayeb5FVmxVvAGFGtfkxWwTjadXOtzcpHzIwDjWqk35JxJueaaqxX593M-lDAdPB3mgns_-hwyjT0tD55ucHTBIU3zPmak25s7Ro8Irfc0TiUM80CnFN1sS4jjMZa8jcMujDiWhfd_p-Rz9o6Gkd4F-xCQTphLTCG_JWc9HrJ_d6qX5P7b19-bH8329vvN5su2sS1npemFRtn1Dm3dG9hu7RyibMFZdNzt6mlV20kutHBy3TqtdW87qztWnyiUFZfk09K37vpn9rmYxzinsY40inPZSq5YhdgC2RRzTr43UwoDpifDwBx1m0W3qbrNUbd5rpkPp8bzbvDuJXHyW4GrE4DZ4qFPONqQXzjVCcklVO7jwvUYDe6rG3P_iwNTUD9NcyHEf1RmkmY</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Chang, S.W</creator><creator>Shieh, C. J</creator><creator>Lee, G. C</creator><creator>Shaw, J. F</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20050401</creationdate><title>Multiple mutagenesis of the Candida rugosa LIP1 gene and optimum production of recombinant LIP1 expressed in Pichia pastoris</title><author>Chang, S.W ; Shieh, C. J ; Lee, G. C ; Shaw, J. F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-f38a57fdac15501b9ddaa540dcad2dbcadc64752383d594d888fc7c87182636c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>biomass</topic><topic>Biotechnology</topic><topic>Candida - enzymology</topic><topic>Candida rugosa</topic><topic>catalysts</topic><topic>Chemical reactions</topic><topic>codons</topic><topic>Enzymes</topic><topic>esterification</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>genes</topic><topic>glucose</topic><topic>hydrolysis</topic><topic>isozymes</topic><topic>Lipase - biosynthesis</topic><topic>Lipase - genetics</topic><topic>lipolysis</topic><topic>methanol</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbiology</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>PCR</topic><topic>Pichia - genetics</topic><topic>Pichia pastoris</topic><topic>polymerase chain reaction</topic><topic>Protein engineering</topic><topic>Recombinant Proteins - biosynthesis</topic><topic>Regression Analysis</topic><topic>response surface methodology</topic><topic>serine</topic><topic>site-directed mutagenesis</topic><topic>substrate specificity</topic><topic>temperature</topic><topic>thermal stability</topic><topic>Yeast</topic><topic>yeast extract</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, S.W</creatorcontrib><creatorcontrib>Shieh, C. J</creatorcontrib><creatorcontrib>Lee, G. C</creatorcontrib><creatorcontrib>Shaw, J. F</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, S.W</au><au>Shieh, C. J</au><au>Lee, G. C</au><au>Shaw, J. F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple mutagenesis of the Candida rugosa LIP1 gene and optimum production of recombinant LIP1 expressed in Pichia pastoris</atitle><jtitle>Applied microbiology and biotechnology</jtitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2005-04-01</date><risdate>2005</risdate><volume>67</volume><issue>2</issue><spage>215</spage><epage>224</epage><pages>215-224</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><coden>AMBIDG</coden><abstract>Candida rugosa lipase, a significant catalyst, had been widely employed to catalyze various chemical reactions such as non-specific, stereo-specific hydrolysis and esterification for industrial biocatalytic applications. Several isozymes encoded by the lip gene family, namely lip1 to lip7, possess distinct thermal stability and substrate specificity, among which the recombinant LIP1 showed a distinguished catalytic characterization. In this study, we utilized PCR to remove an unnecessary linker of pGAPZαC vector and used overlap extension PCR-based multiple site-directed mutagenesis to convert the 19 non-universal CTG-serine codons into universal TCT-serine codons and successfully express a highly active recombinant C. rugosa LIP1 in the Pichia expression system. Response surface methodology and 4-factor-5-level central composite rotatable design were adopted to evaluate the effects of growth parameters, such as temperature (21.6–38.4°C), glucose concentration (0.3–3.7%), yeast extract (0.16–1.84%), and pH (5.3–8.7) on the lipolytic activity of LIP1 and biomass of P. pastoris. Based on ridge max analysis, the optimum LIP1 production conditions were temperature, 24.1°C; glucose concentration, 2.6%; yeast extract, 1.4%; and pH 7.6. The predicted value of lipolytic activity was 246.9±39.7 U/ml, and the actual value was 253.3±18.8 U/ml. The lipolytic activity of the recombinant LIP1 resulting from the present work is twofold higher than that achieved by a methanol induction system.</abstract><cop>Berlin</cop><pub>Springer-Verlag</pub><pmid>15592826</pmid><doi>10.1007/s00253-004-1815-z</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2005-04, Vol.67 (2), p.215-224
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_journals_622545261
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Base Sequence
Biological and medical sciences
biomass
Biotechnology
Candida - enzymology
Candida rugosa
catalysts
Chemical reactions
codons
Enzymes
esterification
Fundamental and applied biological sciences. Psychology
genes
glucose
hydrolysis
isozymes
Lipase - biosynthesis
Lipase - genetics
lipolysis
methanol
Methods. Procedures. Technologies
Microbiology
Molecular Sequence Data
Mutagenesis
PCR
Pichia - genetics
Pichia pastoris
polymerase chain reaction
Protein engineering
Recombinant Proteins - biosynthesis
Regression Analysis
response surface methodology
serine
site-directed mutagenesis
substrate specificity
temperature
thermal stability
Yeast
yeast extract
Yeasts
title Multiple mutagenesis of the Candida rugosa LIP1 gene and optimum production of recombinant LIP1 expressed in Pichia pastoris
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T09%3A45%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20mutagenesis%20of%20the%20Candida%20rugosa%20LIP1%20gene%20and%20optimum%20production%20of%20recombinant%20LIP1%20expressed%20in%20Pichia%20pastoris&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Chang,%20S.W&rft.date=2005-04-01&rft.volume=67&rft.issue=2&rft.spage=215&rft.epage=224&rft.pages=215-224&rft.issn=0175-7598&rft.eissn=1432-0614&rft.coden=AMBIDG&rft_id=info:doi/10.1007/s00253-004-1815-z&rft_dat=%3Cproquest_cross%3E2087473201%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=622545261&rft_id=info:pmid/15592826&rfr_iscdi=true