The Basics of Bases

The maximum length of MDS codes for a given field and dimension, and their structure in the optimal case, remain unknown. However, at least asymptotically, the Reed-Solomon codes (RS codes) are optimal in the family of MDS codes. These RS codes are fundamental in technological applications ranging f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Mathematical intelligencer 2010-06, Vol.32 (2), p.49-55
Hauptverfasser: Bruen, Aiden A., Bruen, Trevor C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 2
container_start_page 49
container_title The Mathematical intelligencer
container_volume 32
creator Bruen, Aiden A.
Bruen, Trevor C.
description The maximum length of MDS codes for a given field and dimension, and their structure in the optimal case, remain unknown. However, at least asymptotically, the Reed-Solomon codes (RS codes) are optimal in the family of MDS codes. These RS codes are fundamental in technological applications ranging from computer drives to CD and DVD players to all manner of digital imaging, such as the amazing pictures transmitted by Voyager II. Here, Bruen and Bruen explain how many bases are contained in a spanning set and obtain the fundamental lower bound for the number of bases in a spanning set in a vector space. Moreover, using a little algebraic geometry they sketch an embedding result for finite fields.
doi_str_mv 10.1007/s00283-010-9149-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_619276055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087316851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-7afb60085b1270242c98634d8f334bfedbbe530b2a1deda561443aed0c5ea6bc3</originalsourceid><addsrcrecordid>eNp1jz1PAzEMhiMEEqUwMbFV7AE7H85lhIoCUiWWMkdJLoFW0CtJO_DvudMhMeHFHp73tR7GrhBuEMDcVgDRSA4I3KKyXB2xCTZE3ChUx2wCUklO1spTdlbrBvpRRBN2uXpPs3tf17HOujxcqZ6zk-w_arr43VP2unhYzZ_48uXxeX635FGQ2XPjcyCARgcUBoQS0TYkVdtkKVXIqQ0haQlBeGxT6zWhUtKnFqJOnkKUU3Y99u5K93VIde823aFs-5eO0ApDoHUP4QjF0tVaUna7sv705dshuEHdjequV3eDulN9RoyZ2rPbt1T-iv8P_QDFTVkj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>619276055</pqid></control><display><type>article</type><title>The Basics of Bases</title><source>SpringerLink Journals</source><creator>Bruen, Aiden A. ; Bruen, Trevor C.</creator><creatorcontrib>Bruen, Aiden A. ; Bruen, Trevor C.</creatorcontrib><description>The maximum length of MDS codes for a given field and dimension, and their structure in the optimal case, remain unknown. However, at least asymptotically, the Reed-Solomon codes (RS codes) are optimal in the family of MDS codes. These RS codes are fundamental in technological applications ranging from computer drives to CD and DVD players to all manner of digital imaging, such as the amazing pictures transmitted by Voyager II. Here, Bruen and Bruen explain how many bases are contained in a spanning set and obtain the fundamental lower bound for the number of bases in a spanning set in a vector space. Moreover, using a little algebraic geometry they sketch an embedding result for finite fields.</description><identifier>ISSN: 0343-6993</identifier><identifier>EISSN: 1866-7414</identifier><identifier>DOI: 10.1007/s00283-010-9149-4</identifier><identifier>CODEN: MAINDC</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Codes ; Linear algebra ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics education ; Numerical and Computational Physics ; Simulation ; Theoretical</subject><ispartof>The Mathematical intelligencer, 2010-06, Vol.32 (2), p.49-55</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>Copyright Springer Science &amp; Business Media Summer 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c267t-7afb60085b1270242c98634d8f334bfedbbe530b2a1deda561443aed0c5ea6bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00283-010-9149-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00283-010-9149-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bruen, Aiden A.</creatorcontrib><creatorcontrib>Bruen, Trevor C.</creatorcontrib><title>The Basics of Bases</title><title>The Mathematical intelligencer</title><addtitle>Math Intelligencer</addtitle><description>The maximum length of MDS codes for a given field and dimension, and their structure in the optimal case, remain unknown. However, at least asymptotically, the Reed-Solomon codes (RS codes) are optimal in the family of MDS codes. These RS codes are fundamental in technological applications ranging from computer drives to CD and DVD players to all manner of digital imaging, such as the amazing pictures transmitted by Voyager II. Here, Bruen and Bruen explain how many bases are contained in a spanning set and obtain the fundamental lower bound for the number of bases in a spanning set in a vector space. Moreover, using a little algebraic geometry they sketch an embedding result for finite fields.</description><subject>Codes</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics education</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>0343-6993</issn><issn>1866-7414</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PAzEMhiMEEqUwMbFV7AE7H85lhIoCUiWWMkdJLoFW0CtJO_DvudMhMeHFHp73tR7GrhBuEMDcVgDRSA4I3KKyXB2xCTZE3ChUx2wCUklO1spTdlbrBvpRRBN2uXpPs3tf17HOujxcqZ6zk-w_arr43VP2unhYzZ_48uXxeX635FGQ2XPjcyCARgcUBoQS0TYkVdtkKVXIqQ0haQlBeGxT6zWhUtKnFqJOnkKUU3Y99u5K93VIde823aFs-5eO0ApDoHUP4QjF0tVaUna7sv705dshuEHdjequV3eDulN9RoyZ2rPbt1T-iv8P_QDFTVkj</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Bruen, Aiden A.</creator><creator>Bruen, Trevor C.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20100601</creationdate><title>The Basics of Bases</title><author>Bruen, Aiden A. ; Bruen, Trevor C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-7afb60085b1270242c98634d8f334bfedbbe530b2a1deda561443aed0c5ea6bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Codes</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics education</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruen, Aiden A.</creatorcontrib><creatorcontrib>Bruen, Trevor C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Mathematical intelligencer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruen, Aiden A.</au><au>Bruen, Trevor C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Basics of Bases</atitle><jtitle>The Mathematical intelligencer</jtitle><stitle>Math Intelligencer</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>32</volume><issue>2</issue><spage>49</spage><epage>55</epage><pages>49-55</pages><issn>0343-6993</issn><eissn>1866-7414</eissn><coden>MAINDC</coden><abstract>The maximum length of MDS codes for a given field and dimension, and their structure in the optimal case, remain unknown. However, at least asymptotically, the Reed-Solomon codes (RS codes) are optimal in the family of MDS codes. These RS codes are fundamental in technological applications ranging from computer drives to CD and DVD players to all manner of digital imaging, such as the amazing pictures transmitted by Voyager II. Here, Bruen and Bruen explain how many bases are contained in a spanning set and obtain the fundamental lower bound for the number of bases in a spanning set in a vector space. Moreover, using a little algebraic geometry they sketch an embedding result for finite fields.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><doi>10.1007/s00283-010-9149-4</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0343-6993
ispartof The Mathematical intelligencer, 2010-06, Vol.32 (2), p.49-55
issn 0343-6993
1866-7414
language eng
recordid cdi_proquest_journals_619276055
source SpringerLink Journals
subjects Codes
Linear algebra
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics education
Numerical and Computational Physics
Simulation
Theoretical
title The Basics of Bases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Basics%20of%20Bases&rft.jtitle=The%20Mathematical%20intelligencer&rft.au=Bruen,%20Aiden%20A.&rft.date=2010-06-01&rft.volume=32&rft.issue=2&rft.spage=49&rft.epage=55&rft.pages=49-55&rft.issn=0343-6993&rft.eissn=1866-7414&rft.coden=MAINDC&rft_id=info:doi/10.1007/s00283-010-9149-4&rft_dat=%3Cproquest_cross%3E2087316851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=619276055&rft_id=info:pmid/&rfr_iscdi=true