The Basics of Bases
The maximum length of MDS codes for a given field and dimension, and their structure in the optimal case, remain unknown. However, at least asymptotically, the Reed-Solomon codes (RS codes) are optimal in the family of MDS codes. These RS codes are fundamental in technological applications ranging f...
Gespeichert in:
Veröffentlicht in: | The Mathematical intelligencer 2010-06, Vol.32 (2), p.49-55 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | 2 |
container_start_page | 49 |
container_title | The Mathematical intelligencer |
container_volume | 32 |
creator | Bruen, Aiden A. Bruen, Trevor C. |
description | The maximum length of MDS codes for a given field and dimension, and their structure in the optimal case, remain unknown. However, at least asymptotically, the Reed-Solomon codes (RS codes) are optimal in the family of MDS codes. These RS codes are fundamental in technological applications ranging from computer drives to CD and DVD players to all manner of digital imaging, such as the amazing pictures transmitted by Voyager II. Here, Bruen and Bruen explain how many bases are contained in a spanning set and obtain the fundamental lower bound for the number of bases in a spanning set in a vector space. Moreover, using a little algebraic geometry they sketch an embedding result for finite fields. |
doi_str_mv | 10.1007/s00283-010-9149-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_619276055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2087316851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-7afb60085b1270242c98634d8f334bfedbbe530b2a1deda561443aed0c5ea6bc3</originalsourceid><addsrcrecordid>eNp1jz1PAzEMhiMEEqUwMbFV7AE7H85lhIoCUiWWMkdJLoFW0CtJO_DvudMhMeHFHp73tR7GrhBuEMDcVgDRSA4I3KKyXB2xCTZE3ChUx2wCUklO1spTdlbrBvpRRBN2uXpPs3tf17HOujxcqZ6zk-w_arr43VP2unhYzZ_48uXxeX635FGQ2XPjcyCARgcUBoQS0TYkVdtkKVXIqQ0haQlBeGxT6zWhUtKnFqJOnkKUU3Y99u5K93VIde823aFs-5eO0ApDoHUP4QjF0tVaUna7sv705dshuEHdjequV3eDulN9RoyZ2rPbt1T-iv8P_QDFTVkj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>619276055</pqid></control><display><type>article</type><title>The Basics of Bases</title><source>SpringerLink Journals</source><creator>Bruen, Aiden A. ; Bruen, Trevor C.</creator><creatorcontrib>Bruen, Aiden A. ; Bruen, Trevor C.</creatorcontrib><description>The maximum length of MDS codes for a given field and dimension, and their structure in the optimal case, remain unknown. However, at least asymptotically, the Reed-Solomon codes (RS codes) are optimal in the family of MDS codes. These RS codes are fundamental in technological applications ranging from computer drives to CD and DVD players to all manner of digital imaging, such as the amazing pictures transmitted by Voyager II. Here, Bruen and Bruen explain how many bases are contained in a spanning set and obtain the fundamental lower bound for the number of bases in a spanning set in a vector space. Moreover, using a little algebraic geometry they sketch an embedding result for finite fields.</description><identifier>ISSN: 0343-6993</identifier><identifier>EISSN: 1866-7414</identifier><identifier>DOI: 10.1007/s00283-010-9149-4</identifier><identifier>CODEN: MAINDC</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Codes ; Linear algebra ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Mathematics education ; Numerical and Computational Physics ; Simulation ; Theoretical</subject><ispartof>The Mathematical intelligencer, 2010-06, Vol.32 (2), p.49-55</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>Copyright Springer Science & Business Media Summer 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c267t-7afb60085b1270242c98634d8f334bfedbbe530b2a1deda561443aed0c5ea6bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00283-010-9149-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00283-010-9149-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Bruen, Aiden A.</creatorcontrib><creatorcontrib>Bruen, Trevor C.</creatorcontrib><title>The Basics of Bases</title><title>The Mathematical intelligencer</title><addtitle>Math Intelligencer</addtitle><description>The maximum length of MDS codes for a given field and dimension, and their structure in the optimal case, remain unknown. However, at least asymptotically, the Reed-Solomon codes (RS codes) are optimal in the family of MDS codes. These RS codes are fundamental in technological applications ranging from computer drives to CD and DVD players to all manner of digital imaging, such as the amazing pictures transmitted by Voyager II. Here, Bruen and Bruen explain how many bases are contained in a spanning set and obtain the fundamental lower bound for the number of bases in a spanning set in a vector space. Moreover, using a little algebraic geometry they sketch an embedding result for finite fields.</description><subject>Codes</subject><subject>Linear algebra</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics education</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>0343-6993</issn><issn>1866-7414</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1jz1PAzEMhiMEEqUwMbFV7AE7H85lhIoCUiWWMkdJLoFW0CtJO_DvudMhMeHFHp73tR7GrhBuEMDcVgDRSA4I3KKyXB2xCTZE3ChUx2wCUklO1spTdlbrBvpRRBN2uXpPs3tf17HOujxcqZ6zk-w_arr43VP2unhYzZ_48uXxeX635FGQ2XPjcyCARgcUBoQS0TYkVdtkKVXIqQ0haQlBeGxT6zWhUtKnFqJOnkKUU3Y99u5K93VIde823aFs-5eO0ApDoHUP4QjF0tVaUna7sv705dshuEHdjequV3eDulN9RoyZ2rPbt1T-iv8P_QDFTVkj</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Bruen, Aiden A.</creator><creator>Bruen, Trevor C.</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20100601</creationdate><title>The Basics of Bases</title><author>Bruen, Aiden A. ; Bruen, Trevor C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-7afb60085b1270242c98634d8f334bfedbbe530b2a1deda561443aed0c5ea6bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Codes</topic><topic>Linear algebra</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics education</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruen, Aiden A.</creatorcontrib><creatorcontrib>Bruen, Trevor C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Mathematical intelligencer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruen, Aiden A.</au><au>Bruen, Trevor C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Basics of Bases</atitle><jtitle>The Mathematical intelligencer</jtitle><stitle>Math Intelligencer</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>32</volume><issue>2</issue><spage>49</spage><epage>55</epage><pages>49-55</pages><issn>0343-6993</issn><eissn>1866-7414</eissn><coden>MAINDC</coden><abstract>The maximum length of MDS codes for a given field and dimension, and their structure in the optimal case, remain unknown. However, at least asymptotically, the Reed-Solomon codes (RS codes) are optimal in the family of MDS codes. These RS codes are fundamental in technological applications ranging from computer drives to CD and DVD players to all manner of digital imaging, such as the amazing pictures transmitted by Voyager II. Here, Bruen and Bruen explain how many bases are contained in a spanning set and obtain the fundamental lower bound for the number of bases in a spanning set in a vector space. Moreover, using a little algebraic geometry they sketch an embedding result for finite fields.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><doi>10.1007/s00283-010-9149-4</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0343-6993 |
ispartof | The Mathematical intelligencer, 2010-06, Vol.32 (2), p.49-55 |
issn | 0343-6993 1866-7414 |
language | eng |
recordid | cdi_proquest_journals_619276055 |
source | SpringerLink Journals |
subjects | Codes Linear algebra Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Mathematics education Numerical and Computational Physics Simulation Theoretical |
title | The Basics of Bases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Basics%20of%20Bases&rft.jtitle=The%20Mathematical%20intelligencer&rft.au=Bruen,%20Aiden%20A.&rft.date=2010-06-01&rft.volume=32&rft.issue=2&rft.spage=49&rft.epage=55&rft.pages=49-55&rft.issn=0343-6993&rft.eissn=1866-7414&rft.coden=MAINDC&rft_id=info:doi/10.1007/s00283-010-9149-4&rft_dat=%3Cproquest_cross%3E2087316851%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=619276055&rft_id=info:pmid/&rfr_iscdi=true |