Repeated Cross-Sectional Randomized Response Data: Taking Design Change and Self-Protective Responses into Account

Randomized response (RR) is an interview technique that can be used to protect the privacy of respondents if sensitive questions are posed. This paper explains how to measure change in time if a binary RR question is posed at several time points. In cross-sectional research settings, new insights of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methodology 2009, Vol.5 (4), p.145-152
Hauptverfasser: Frank, L. E, van den Hout, A, van der Heijden, P. G. M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 152
container_issue 4
container_start_page 145
container_title Methodology
container_volume 5
creator Frank, L. E
van den Hout, A
van der Heijden, P. G. M
description Randomized response (RR) is an interview technique that can be used to protect the privacy of respondents if sensitive questions are posed. This paper explains how to measure change in time if a binary RR question is posed at several time points. In cross-sectional research settings, new insights often gradually emerge. In our setting, a switch to another RR procedure necessitates the development of a trend model that estimates the effect of the covariate time if the dependent variable is measured by different RR designs. We also demonstrate that it is possible to deal with self-protective responses, thus accommodating our trend model with the latest developments in RR data analysis.
doi_str_mv 10.1027/1614-2241.5.4.145
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_614509609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>614509609</sourcerecordid><originalsourceid>FETCH-LOGICAL-a317t-90011de62555c03953b306690e763fa8c753da65171f63da18781feee864236c3</originalsourceid><addsrcrecordid>eNptkE1Lw0AQhhdRsFZ_gLeieBESd7JfyVHqJxSEqudl3EwgJU3ibnrQX--GlqLgaYaZ5315Zxg7B54Cz8wNaJBJlklIVSpTkOqATfazw10PeQ7H7CSEFecyTsyEwZJ6woHK2dx3ISSv5Ia6a7GZLbEtu3X9HVdLCn3XBprd4YCn7KjCJtDZrk7Z-8P92_wpWbw8Ps9vFwkKMENScA5Qks6UUo6LQokPwbUuOBktKsydUaJErcBApWMHucmhIqJcy0xoJ6bsYuvb--5zQ2Gwq27jY7Jg4y2KF5oXEYIt5Mb0nirb-3qN_ssCt-Nj7Hi4HZ9glZU2CqPmameMwWFTeWxdHfbCTBhudM4jd73lsEfbhy-HfqhdQ8FtvKd2sGsqf5le_g__oX4AKgd7lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>614509609</pqid></control><display><type>article</type><title>Repeated Cross-Sectional Randomized Response Data: Taking Design Change and Self-Protective Responses into Account</title><source>EBSCOhost APA PsycARTICLES</source><source>Hogrefe eContent</source><creator>Frank, L. E ; van den Hout, A ; van der Heijden, P. G. M</creator><creatorcontrib>Frank, L. E ; van den Hout, A ; van der Heijden, P. G. M</creatorcontrib><description>Randomized response (RR) is an interview technique that can be used to protect the privacy of respondents if sensitive questions are posed. This paper explains how to measure change in time if a binary RR question is posed at several time points. In cross-sectional research settings, new insights often gradually emerge. In our setting, a switch to another RR procedure necessitates the development of a trend model that estimates the effect of the covariate time if the dependent variable is measured by different RR designs. We also demonstrate that it is possible to deal with self-protective responses, thus accommodating our trend model with the latest developments in RR data analysis.</description><identifier>ISSN: 1614-1881</identifier><identifier>EISSN: 1614-2241</identifier><identifier>DOI: 10.1027/1614-2241.5.4.145</identifier><language>eng</language><publisher>Göttingen: Hogrefe &amp; Huber Publishers</publisher><subject>Biological and medical sciences ; Dependent Variables ; Fundamental and applied biological sciences. Psychology ; Interviewing ; Linear Regression ; Methodology ; Privacy ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics ; Psychometrics. Statistics. Methodology ; Response Parameters ; Statistics. Mathematics ; Trends</subject><ispartof>Methodology, 2009, Vol.5 (4), p.145-152</ispartof><rights>2009 Hogrefe &amp; Huber Publishers</rights><rights>2015 INIST-CNRS</rights><rights>2009, Hogrefe &amp; Huber Publishers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a317t-90011de62555c03953b306690e763fa8c753da65171f63da18781feee864236c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23707680$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Frank, L. E</creatorcontrib><creatorcontrib>van den Hout, A</creatorcontrib><creatorcontrib>van der Heijden, P. G. M</creatorcontrib><title>Repeated Cross-Sectional Randomized Response Data: Taking Design Change and Self-Protective Responses into Account</title><title>Methodology</title><description>Randomized response (RR) is an interview technique that can be used to protect the privacy of respondents if sensitive questions are posed. This paper explains how to measure change in time if a binary RR question is posed at several time points. In cross-sectional research settings, new insights often gradually emerge. In our setting, a switch to another RR procedure necessitates the development of a trend model that estimates the effect of the covariate time if the dependent variable is measured by different RR designs. We also demonstrate that it is possible to deal with self-protective responses, thus accommodating our trend model with the latest developments in RR data analysis.</description><subject>Biological and medical sciences</subject><subject>Dependent Variables</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Interviewing</subject><subject>Linear Regression</subject><subject>Methodology</subject><subject>Privacy</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics</subject><subject>Psychometrics. Statistics. Methodology</subject><subject>Response Parameters</subject><subject>Statistics. Mathematics</subject><subject>Trends</subject><issn>1614-1881</issn><issn>1614-2241</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkE1Lw0AQhhdRsFZ_gLeieBESd7JfyVHqJxSEqudl3EwgJU3ibnrQX--GlqLgaYaZ5315Zxg7B54Cz8wNaJBJlklIVSpTkOqATfazw10PeQ7H7CSEFecyTsyEwZJ6woHK2dx3ISSv5Ia6a7GZLbEtu3X9HVdLCn3XBprd4YCn7KjCJtDZrk7Z-8P92_wpWbw8Ps9vFwkKMENScA5Qks6UUo6LQokPwbUuOBktKsydUaJErcBApWMHucmhIqJcy0xoJ6bsYuvb--5zQ2Gwq27jY7Jg4y2KF5oXEYIt5Mb0nirb-3qN_ssCt-Nj7Hi4HZ9glZU2CqPmameMwWFTeWxdHfbCTBhudM4jd73lsEfbhy-HfqhdQ8FtvKd2sGsqf5le_g__oX4AKgd7lg</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Frank, L. E</creator><creator>van den Hout, A</creator><creator>van der Heijden, P. G. M</creator><general>Hogrefe &amp; Huber Publishers</general><general>Hogrefe</general><general>Hogrefe Publishing</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PSYQQ</scope></search><sort><creationdate>2009</creationdate><title>Repeated Cross-Sectional Randomized Response Data</title><author>Frank, L. E ; van den Hout, A ; van der Heijden, P. G. M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a317t-90011de62555c03953b306690e763fa8c753da65171f63da18781feee864236c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological and medical sciences</topic><topic>Dependent Variables</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Interviewing</topic><topic>Linear Regression</topic><topic>Methodology</topic><topic>Privacy</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics</topic><topic>Psychometrics. Statistics. Methodology</topic><topic>Response Parameters</topic><topic>Statistics. Mathematics</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frank, L. E</creatorcontrib><creatorcontrib>van den Hout, A</creatorcontrib><creatorcontrib>van der Heijden, P. G. M</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Access via APA PsycArticles® (ProQuest)</collection><collection>ProQuest One Psychology</collection><jtitle>Methodology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frank, L. E</au><au>van den Hout, A</au><au>van der Heijden, P. G. M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Repeated Cross-Sectional Randomized Response Data: Taking Design Change and Self-Protective Responses into Account</atitle><jtitle>Methodology</jtitle><date>2009</date><risdate>2009</risdate><volume>5</volume><issue>4</issue><spage>145</spage><epage>152</epage><pages>145-152</pages><issn>1614-1881</issn><eissn>1614-2241</eissn><abstract>Randomized response (RR) is an interview technique that can be used to protect the privacy of respondents if sensitive questions are posed. This paper explains how to measure change in time if a binary RR question is posed at several time points. In cross-sectional research settings, new insights often gradually emerge. In our setting, a switch to another RR procedure necessitates the development of a trend model that estimates the effect of the covariate time if the dependent variable is measured by different RR designs. We also demonstrate that it is possible to deal with self-protective responses, thus accommodating our trend model with the latest developments in RR data analysis.</abstract><cop>Göttingen</cop><pub>Hogrefe &amp; Huber Publishers</pub><doi>10.1027/1614-2241.5.4.145</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1614-1881
ispartof Methodology, 2009, Vol.5 (4), p.145-152
issn 1614-1881
1614-2241
language eng
recordid cdi_proquest_journals_614509609
source EBSCOhost APA PsycARTICLES; Hogrefe eContent
subjects Biological and medical sciences
Dependent Variables
Fundamental and applied biological sciences. Psychology
Interviewing
Linear Regression
Methodology
Privacy
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Psychometrics
Psychometrics. Statistics. Methodology
Response Parameters
Statistics. Mathematics
Trends
title Repeated Cross-Sectional Randomized Response Data: Taking Design Change and Self-Protective Responses into Account
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A38%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Repeated%20Cross-Sectional%20Randomized%20Response%20Data:%20Taking%20Design%20Change%20and%20Self-Protective%20Responses%20into%20Account&rft.jtitle=Methodology&rft.au=Frank,%20L.%20E&rft.date=2009&rft.volume=5&rft.issue=4&rft.spage=145&rft.epage=152&rft.pages=145-152&rft.issn=1614-1881&rft.eissn=1614-2241&rft_id=info:doi/10.1027/1614-2241.5.4.145&rft_dat=%3Cproquest_cross%3E614509609%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=614509609&rft_id=info:pmid/&rfr_iscdi=true