Propensity Score Estimation With Boosted Regression for Evaluating Causal Effects in Observational Studies
Causal effect modeling with naturalistic rather than experimental data is challenging. In observational studies participants in different treatment conditions may also differ on pretreatment characteristics that influence outcomes. Propensity score methods can theoretically eliminate these confounds...
Gespeichert in:
Veröffentlicht in: | Psychological methods 2004-12, Vol.9 (4), p.403-425 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 425 |
---|---|
container_issue | 4 |
container_start_page | 403 |
container_title | Psychological methods |
container_volume | 9 |
creator | McCaffrey, Daniel F Ridgeway, Greg Morral, Andrew R |
description | Causal effect modeling with naturalistic rather than experimental data is challenging. In observational studies participants in different treatment conditions may also differ on pretreatment characteristics that influence outcomes. Propensity score methods can theoretically eliminate these confounds for all observed covariates, but accurate estimation of propensity scores is impeded by large numbers of covariates, uncertain functional forms for their associations with treatment selection, and other problems. This article demonstrates that boosting, a modern statistical technique, can overcome many of these obstacles. The authors illustrate this approach with a study of adolescent probationers in substance abuse treatment programs. Propensity score weights estimated using boosting eliminate most pretreatment group differences and substantially alter the apparent relative effects of adolescent substance abuse treatment. |
doi_str_mv | 10.1037/1082-989X.9.4.403 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_614400197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ685073</ericid><sourcerecordid>614400197</sourcerecordid><originalsourceid>FETCH-LOGICAL-a488t-98277c4425a61e89865f9bc33d628b52abfcd4abba3bafce4c10961421bcf2f63</originalsourceid><addsrcrecordid>eNptkF-L1DAUxYMo7rr6AQSRoPgizJg0aZs86lD_sbDiKvoWkjRZM3Sabm66MN_e1BldBZ8Scn733JOD0GNK1pSw9hUlolpJIb-v5ZqvOWF30CmVTK4ob9jdcv-tn6AHAFtCKGeC30cntK6lILI-RdtPKU5uhJD3-NLG5HAHOex0DnHE30L-gd_ECNn1-LO7Sg5gefcx4e5GD3PBxiu80TPoAXfeO5sBhxFfGHDp5pdJES7z3AcHD9E9rwdwj47nGfr6tvuyeb86v3j3YfP6fKW5ELnkrdrWcl7VuqFOSNHUXhrLWN9UwtSVNt72XBujmdHeOm4pkQ3lFTXWV75hZ-jZwXdK8Xp2kNU2zqkEAVUwXlqQbYHoAbIpAiTn1ZTKt9NeUaKWctVSnlrKU1JxVcotM0-PxrPZuf524thmAV4cAQ1WDz7p0Qa45RpWccJl4Z4cOJeC_SN3HxtRk3bZ8_Ig60mrCfZWpxzs4MDOKbkxq53Lf4V6_n_4H-onF9mohw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>614400197</pqid></control><display><type>article</type><title>Propensity Score Estimation With Boosted Regression for Evaluating Causal Effects in Observational Studies</title><source>MEDLINE</source><source>EBSCOhost APA PsycARTICLES</source><creator>McCaffrey, Daniel F ; Ridgeway, Greg ; Morral, Andrew R</creator><contributor>West, Stephen G</contributor><creatorcontrib>McCaffrey, Daniel F ; Ridgeway, Greg ; Morral, Andrew R ; West, Stephen G</creatorcontrib><description>Causal effect modeling with naturalistic rather than experimental data is challenging. In observational studies participants in different treatment conditions may also differ on pretreatment characteristics that influence outcomes. Propensity score methods can theoretically eliminate these confounds for all observed covariates, but accurate estimation of propensity scores is impeded by large numbers of covariates, uncertain functional forms for their associations with treatment selection, and other problems. This article demonstrates that boosting, a modern statistical technique, can overcome many of these obstacles. The authors illustrate this approach with a study of adolescent probationers in substance abuse treatment programs. Propensity score weights estimated using boosting eliminate most pretreatment group differences and substantially alter the apparent relative effects of adolescent substance abuse treatment.</description><identifier>ISSN: 1082-989X</identifier><identifier>EISSN: 1939-1463</identifier><identifier>DOI: 10.1037/1082-989X.9.4.403</identifier><identifier>PMID: 15598095</identifier><language>eng</language><publisher>Washington, DC: American Psychological Association</publisher><subject>Adolescents ; Biological and medical sciences ; Causal Analysis ; Causal Models ; Drug Abuse ; Evaluation Methods ; Evaluation Research ; Evaluation Studies as Topic ; Female ; Fundamental and applied biological sciences. Psychology ; Human ; Humans ; Male ; Models, Psychological ; Observation ; Outcome Assessment (Health Care) - statistics & numerical data ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics - statistics & numerical data ; Psychometrics. Statistics. Methodology ; Regression (Statistics) ; Scores ; Statistical Analysis ; Statistical Estimation ; Statistical Inference ; Statistical Measurement ; Statistics. Mathematics ; Substance Abuse ; Substance Use Treatment ; Substance-Related Disorders - therapy ; Treatment Outcomes</subject><ispartof>Psychological methods, 2004-12, Vol.9 (4), p.403-425</ispartof><rights>2004 American Psychological Association</rights><rights>2005 INIST-CNRS</rights><rights>((c) 2004 APA, all rights reserved).</rights><rights>2004, American Psychological Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a488t-98277c4425a61e89865f9bc33d628b52abfcd4abba3bafce4c10961421bcf2f63</citedby><cites>FETCH-LOGICAL-a488t-98277c4425a61e89865f9bc33d628b52abfcd4abba3bafce4c10961421bcf2f63</cites><orcidid>0000-0001-6911-0804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ685073$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16324049$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15598095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>West, Stephen G</contributor><creatorcontrib>McCaffrey, Daniel F</creatorcontrib><creatorcontrib>Ridgeway, Greg</creatorcontrib><creatorcontrib>Morral, Andrew R</creatorcontrib><title>Propensity Score Estimation With Boosted Regression for Evaluating Causal Effects in Observational Studies</title><title>Psychological methods</title><addtitle>Psychol Methods</addtitle><description>Causal effect modeling with naturalistic rather than experimental data is challenging. In observational studies participants in different treatment conditions may also differ on pretreatment characteristics that influence outcomes. Propensity score methods can theoretically eliminate these confounds for all observed covariates, but accurate estimation of propensity scores is impeded by large numbers of covariates, uncertain functional forms for their associations with treatment selection, and other problems. This article demonstrates that boosting, a modern statistical technique, can overcome many of these obstacles. The authors illustrate this approach with a study of adolescent probationers in substance abuse treatment programs. Propensity score weights estimated using boosting eliminate most pretreatment group differences and substantially alter the apparent relative effects of adolescent substance abuse treatment.</description><subject>Adolescents</subject><subject>Biological and medical sciences</subject><subject>Causal Analysis</subject><subject>Causal Models</subject><subject>Drug Abuse</subject><subject>Evaluation Methods</subject><subject>Evaluation Research</subject><subject>Evaluation Studies as Topic</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Human</subject><subject>Humans</subject><subject>Male</subject><subject>Models, Psychological</subject><subject>Observation</subject><subject>Outcome Assessment (Health Care) - statistics & numerical data</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics - statistics & numerical data</subject><subject>Psychometrics. Statistics. Methodology</subject><subject>Regression (Statistics)</subject><subject>Scores</subject><subject>Statistical Analysis</subject><subject>Statistical Estimation</subject><subject>Statistical Inference</subject><subject>Statistical Measurement</subject><subject>Statistics. Mathematics</subject><subject>Substance Abuse</subject><subject>Substance Use Treatment</subject><subject>Substance-Related Disorders - therapy</subject><subject>Treatment Outcomes</subject><issn>1082-989X</issn><issn>1939-1463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkF-L1DAUxYMo7rr6AQSRoPgizJg0aZs86lD_sbDiKvoWkjRZM3Sabm66MN_e1BldBZ8Scn733JOD0GNK1pSw9hUlolpJIb-v5ZqvOWF30CmVTK4ob9jdcv-tn6AHAFtCKGeC30cntK6lILI-RdtPKU5uhJD3-NLG5HAHOex0DnHE30L-gd_ECNn1-LO7Sg5gefcx4e5GD3PBxiu80TPoAXfeO5sBhxFfGHDp5pdJES7z3AcHD9E9rwdwj47nGfr6tvuyeb86v3j3YfP6fKW5ELnkrdrWcl7VuqFOSNHUXhrLWN9UwtSVNt72XBujmdHeOm4pkQ3lFTXWV75hZ-jZwXdK8Xp2kNU2zqkEAVUwXlqQbYHoAbIpAiTn1ZTKt9NeUaKWctVSnlrKU1JxVcotM0-PxrPZuf524thmAV4cAQ1WDz7p0Qa45RpWccJl4Z4cOJeC_SN3HxtRk3bZ8_Ig60mrCfZWpxzs4MDOKbkxq53Lf4V6_n_4H-onF9mohw</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>McCaffrey, Daniel F</creator><creator>Ridgeway, Greg</creator><creator>Morral, Andrew R</creator><general>American Psychological Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PSYQQ</scope><orcidid>https://orcid.org/0000-0001-6911-0804</orcidid></search><sort><creationdate>20041201</creationdate><title>Propensity Score Estimation With Boosted Regression for Evaluating Causal Effects in Observational Studies</title><author>McCaffrey, Daniel F ; Ridgeway, Greg ; Morral, Andrew R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a488t-98277c4425a61e89865f9bc33d628b52abfcd4abba3bafce4c10961421bcf2f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adolescents</topic><topic>Biological and medical sciences</topic><topic>Causal Analysis</topic><topic>Causal Models</topic><topic>Drug Abuse</topic><topic>Evaluation Methods</topic><topic>Evaluation Research</topic><topic>Evaluation Studies as Topic</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Human</topic><topic>Humans</topic><topic>Male</topic><topic>Models, Psychological</topic><topic>Observation</topic><topic>Outcome Assessment (Health Care) - statistics & numerical data</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics - statistics & numerical data</topic><topic>Psychometrics. Statistics. Methodology</topic><topic>Regression (Statistics)</topic><topic>Scores</topic><topic>Statistical Analysis</topic><topic>Statistical Estimation</topic><topic>Statistical Inference</topic><topic>Statistical Measurement</topic><topic>Statistics. Mathematics</topic><topic>Substance Abuse</topic><topic>Substance Use Treatment</topic><topic>Substance-Related Disorders - therapy</topic><topic>Treatment Outcomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCaffrey, Daniel F</creatorcontrib><creatorcontrib>Ridgeway, Greg</creatorcontrib><creatorcontrib>Morral, Andrew R</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>APA PsycArticles®</collection><collection>ProQuest One Psychology</collection><jtitle>Psychological methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCaffrey, Daniel F</au><au>Ridgeway, Greg</au><au>Morral, Andrew R</au><au>West, Stephen G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ685073</ericid><atitle>Propensity Score Estimation With Boosted Regression for Evaluating Causal Effects in Observational Studies</atitle><jtitle>Psychological methods</jtitle><addtitle>Psychol Methods</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>9</volume><issue>4</issue><spage>403</spage><epage>425</epage><pages>403-425</pages><issn>1082-989X</issn><eissn>1939-1463</eissn><abstract>Causal effect modeling with naturalistic rather than experimental data is challenging. In observational studies participants in different treatment conditions may also differ on pretreatment characteristics that influence outcomes. Propensity score methods can theoretically eliminate these confounds for all observed covariates, but accurate estimation of propensity scores is impeded by large numbers of covariates, uncertain functional forms for their associations with treatment selection, and other problems. This article demonstrates that boosting, a modern statistical technique, can overcome many of these obstacles. The authors illustrate this approach with a study of adolescent probationers in substance abuse treatment programs. Propensity score weights estimated using boosting eliminate most pretreatment group differences and substantially alter the apparent relative effects of adolescent substance abuse treatment.</abstract><cop>Washington, DC</cop><pub>American Psychological Association</pub><pmid>15598095</pmid><doi>10.1037/1082-989X.9.4.403</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-6911-0804</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1082-989X |
ispartof | Psychological methods, 2004-12, Vol.9 (4), p.403-425 |
issn | 1082-989X 1939-1463 |
language | eng |
recordid | cdi_proquest_journals_614400197 |
source | MEDLINE; EBSCOhost APA PsycARTICLES |
subjects | Adolescents Biological and medical sciences Causal Analysis Causal Models Drug Abuse Evaluation Methods Evaluation Research Evaluation Studies as Topic Female Fundamental and applied biological sciences. Psychology Human Humans Male Models, Psychological Observation Outcome Assessment (Health Care) - statistics & numerical data Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Psychometrics - statistics & numerical data Psychometrics. Statistics. Methodology Regression (Statistics) Scores Statistical Analysis Statistical Estimation Statistical Inference Statistical Measurement Statistics. Mathematics Substance Abuse Substance Use Treatment Substance-Related Disorders - therapy Treatment Outcomes |
title | Propensity Score Estimation With Boosted Regression for Evaluating Causal Effects in Observational Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propensity%20Score%20Estimation%20With%20Boosted%20Regression%20for%20Evaluating%20Causal%20Effects%20in%20Observational%20Studies&rft.jtitle=Psychological%20methods&rft.au=McCaffrey,%20Daniel%20F&rft.date=2004-12-01&rft.volume=9&rft.issue=4&rft.spage=403&rft.epage=425&rft.pages=403-425&rft.issn=1082-989X&rft.eissn=1939-1463&rft_id=info:doi/10.1037/1082-989X.9.4.403&rft_dat=%3Cproquest_cross%3E614400197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=614400197&rft_id=info:pmid/15598095&rft_ericid=EJ685073&rfr_iscdi=true |