Propensity Score Estimation With Boosted Regression for Evaluating Causal Effects in Observational Studies

Causal effect modeling with naturalistic rather than experimental data is challenging. In observational studies participants in different treatment conditions may also differ on pretreatment characteristics that influence outcomes. Propensity score methods can theoretically eliminate these confounds...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychological methods 2004-12, Vol.9 (4), p.403-425
Hauptverfasser: McCaffrey, Daniel F, Ridgeway, Greg, Morral, Andrew R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 425
container_issue 4
container_start_page 403
container_title Psychological methods
container_volume 9
creator McCaffrey, Daniel F
Ridgeway, Greg
Morral, Andrew R
description Causal effect modeling with naturalistic rather than experimental data is challenging. In observational studies participants in different treatment conditions may also differ on pretreatment characteristics that influence outcomes. Propensity score methods can theoretically eliminate these confounds for all observed covariates, but accurate estimation of propensity scores is impeded by large numbers of covariates, uncertain functional forms for their associations with treatment selection, and other problems. This article demonstrates that boosting, a modern statistical technique, can overcome many of these obstacles. The authors illustrate this approach with a study of adolescent probationers in substance abuse treatment programs. Propensity score weights estimated using boosting eliminate most pretreatment group differences and substantially alter the apparent relative effects of adolescent substance abuse treatment.
doi_str_mv 10.1037/1082-989X.9.4.403
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_614400197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ685073</ericid><sourcerecordid>614400197</sourcerecordid><originalsourceid>FETCH-LOGICAL-a488t-98277c4425a61e89865f9bc33d628b52abfcd4abba3bafce4c10961421bcf2f63</originalsourceid><addsrcrecordid>eNptkF-L1DAUxYMo7rr6AQSRoPgizJg0aZs86lD_sbDiKvoWkjRZM3Sabm66MN_e1BldBZ8Scn733JOD0GNK1pSw9hUlolpJIb-v5ZqvOWF30CmVTK4ob9jdcv-tn6AHAFtCKGeC30cntK6lILI-RdtPKU5uhJD3-NLG5HAHOex0DnHE30L-gd_ECNn1-LO7Sg5gefcx4e5GD3PBxiu80TPoAXfeO5sBhxFfGHDp5pdJES7z3AcHD9E9rwdwj47nGfr6tvuyeb86v3j3YfP6fKW5ELnkrdrWcl7VuqFOSNHUXhrLWN9UwtSVNt72XBujmdHeOm4pkQ3lFTXWV75hZ-jZwXdK8Xp2kNU2zqkEAVUwXlqQbYHoAbIpAiTn1ZTKt9NeUaKWctVSnlrKU1JxVcotM0-PxrPZuf524thmAV4cAQ1WDz7p0Qa45RpWccJl4Z4cOJeC_SN3HxtRk3bZ8_Ig60mrCfZWpxzs4MDOKbkxq53Lf4V6_n_4H-onF9mohw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>614400197</pqid></control><display><type>article</type><title>Propensity Score Estimation With Boosted Regression for Evaluating Causal Effects in Observational Studies</title><source>MEDLINE</source><source>EBSCOhost APA PsycARTICLES</source><creator>McCaffrey, Daniel F ; Ridgeway, Greg ; Morral, Andrew R</creator><contributor>West, Stephen G</contributor><creatorcontrib>McCaffrey, Daniel F ; Ridgeway, Greg ; Morral, Andrew R ; West, Stephen G</creatorcontrib><description>Causal effect modeling with naturalistic rather than experimental data is challenging. In observational studies participants in different treatment conditions may also differ on pretreatment characteristics that influence outcomes. Propensity score methods can theoretically eliminate these confounds for all observed covariates, but accurate estimation of propensity scores is impeded by large numbers of covariates, uncertain functional forms for their associations with treatment selection, and other problems. This article demonstrates that boosting, a modern statistical technique, can overcome many of these obstacles. The authors illustrate this approach with a study of adolescent probationers in substance abuse treatment programs. Propensity score weights estimated using boosting eliminate most pretreatment group differences and substantially alter the apparent relative effects of adolescent substance abuse treatment.</description><identifier>ISSN: 1082-989X</identifier><identifier>EISSN: 1939-1463</identifier><identifier>DOI: 10.1037/1082-989X.9.4.403</identifier><identifier>PMID: 15598095</identifier><language>eng</language><publisher>Washington, DC: American Psychological Association</publisher><subject>Adolescents ; Biological and medical sciences ; Causal Analysis ; Causal Models ; Drug Abuse ; Evaluation Methods ; Evaluation Research ; Evaluation Studies as Topic ; Female ; Fundamental and applied biological sciences. Psychology ; Human ; Humans ; Male ; Models, Psychological ; Observation ; Outcome Assessment (Health Care) - statistics &amp; numerical data ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Psychometrics - statistics &amp; numerical data ; Psychometrics. Statistics. Methodology ; Regression (Statistics) ; Scores ; Statistical Analysis ; Statistical Estimation ; Statistical Inference ; Statistical Measurement ; Statistics. Mathematics ; Substance Abuse ; Substance Use Treatment ; Substance-Related Disorders - therapy ; Treatment Outcomes</subject><ispartof>Psychological methods, 2004-12, Vol.9 (4), p.403-425</ispartof><rights>2004 American Psychological Association</rights><rights>2005 INIST-CNRS</rights><rights>((c) 2004 APA, all rights reserved).</rights><rights>2004, American Psychological Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a488t-98277c4425a61e89865f9bc33d628b52abfcd4abba3bafce4c10961421bcf2f63</citedby><cites>FETCH-LOGICAL-a488t-98277c4425a61e89865f9bc33d628b52abfcd4abba3bafce4c10961421bcf2f63</cites><orcidid>0000-0001-6911-0804</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ685073$$DView record in ERIC$$Hfree_for_read</backlink><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16324049$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15598095$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>West, Stephen G</contributor><creatorcontrib>McCaffrey, Daniel F</creatorcontrib><creatorcontrib>Ridgeway, Greg</creatorcontrib><creatorcontrib>Morral, Andrew R</creatorcontrib><title>Propensity Score Estimation With Boosted Regression for Evaluating Causal Effects in Observational Studies</title><title>Psychological methods</title><addtitle>Psychol Methods</addtitle><description>Causal effect modeling with naturalistic rather than experimental data is challenging. In observational studies participants in different treatment conditions may also differ on pretreatment characteristics that influence outcomes. Propensity score methods can theoretically eliminate these confounds for all observed covariates, but accurate estimation of propensity scores is impeded by large numbers of covariates, uncertain functional forms for their associations with treatment selection, and other problems. This article demonstrates that boosting, a modern statistical technique, can overcome many of these obstacles. The authors illustrate this approach with a study of adolescent probationers in substance abuse treatment programs. Propensity score weights estimated using boosting eliminate most pretreatment group differences and substantially alter the apparent relative effects of adolescent substance abuse treatment.</description><subject>Adolescents</subject><subject>Biological and medical sciences</subject><subject>Causal Analysis</subject><subject>Causal Models</subject><subject>Drug Abuse</subject><subject>Evaluation Methods</subject><subject>Evaluation Research</subject><subject>Evaluation Studies as Topic</subject><subject>Female</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Human</subject><subject>Humans</subject><subject>Male</subject><subject>Models, Psychological</subject><subject>Observation</subject><subject>Outcome Assessment (Health Care) - statistics &amp; numerical data</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Psychometrics - statistics &amp; numerical data</subject><subject>Psychometrics. Statistics. Methodology</subject><subject>Regression (Statistics)</subject><subject>Scores</subject><subject>Statistical Analysis</subject><subject>Statistical Estimation</subject><subject>Statistical Inference</subject><subject>Statistical Measurement</subject><subject>Statistics. Mathematics</subject><subject>Substance Abuse</subject><subject>Substance Use Treatment</subject><subject>Substance-Related Disorders - therapy</subject><subject>Treatment Outcomes</subject><issn>1082-989X</issn><issn>1939-1463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkF-L1DAUxYMo7rr6AQSRoPgizJg0aZs86lD_sbDiKvoWkjRZM3Sabm66MN_e1BldBZ8Scn733JOD0GNK1pSw9hUlolpJIb-v5ZqvOWF30CmVTK4ob9jdcv-tn6AHAFtCKGeC30cntK6lILI-RdtPKU5uhJD3-NLG5HAHOex0DnHE30L-gd_ECNn1-LO7Sg5gefcx4e5GD3PBxiu80TPoAXfeO5sBhxFfGHDp5pdJES7z3AcHD9E9rwdwj47nGfr6tvuyeb86v3j3YfP6fKW5ELnkrdrWcl7VuqFOSNHUXhrLWN9UwtSVNt72XBujmdHeOm4pkQ3lFTXWV75hZ-jZwXdK8Xp2kNU2zqkEAVUwXlqQbYHoAbIpAiTn1ZTKt9NeUaKWctVSnlrKU1JxVcotM0-PxrPZuf524thmAV4cAQ1WDz7p0Qa45RpWccJl4Z4cOJeC_SN3HxtRk3bZ8_Ig60mrCfZWpxzs4MDOKbkxq53Lf4V6_n_4H-onF9mohw</recordid><startdate>20041201</startdate><enddate>20041201</enddate><creator>McCaffrey, Daniel F</creator><creator>Ridgeway, Greg</creator><creator>Morral, Andrew R</creator><general>American Psychological Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7RZ</scope><scope>PSYQQ</scope><orcidid>https://orcid.org/0000-0001-6911-0804</orcidid></search><sort><creationdate>20041201</creationdate><title>Propensity Score Estimation With Boosted Regression for Evaluating Causal Effects in Observational Studies</title><author>McCaffrey, Daniel F ; Ridgeway, Greg ; Morral, Andrew R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a488t-98277c4425a61e89865f9bc33d628b52abfcd4abba3bafce4c10961421bcf2f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adolescents</topic><topic>Biological and medical sciences</topic><topic>Causal Analysis</topic><topic>Causal Models</topic><topic>Drug Abuse</topic><topic>Evaluation Methods</topic><topic>Evaluation Research</topic><topic>Evaluation Studies as Topic</topic><topic>Female</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Human</topic><topic>Humans</topic><topic>Male</topic><topic>Models, Psychological</topic><topic>Observation</topic><topic>Outcome Assessment (Health Care) - statistics &amp; numerical data</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Psychometrics - statistics &amp; numerical data</topic><topic>Psychometrics. Statistics. Methodology</topic><topic>Regression (Statistics)</topic><topic>Scores</topic><topic>Statistical Analysis</topic><topic>Statistical Estimation</topic><topic>Statistical Inference</topic><topic>Statistical Measurement</topic><topic>Statistics. Mathematics</topic><topic>Substance Abuse</topic><topic>Substance Use Treatment</topic><topic>Substance-Related Disorders - therapy</topic><topic>Treatment Outcomes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCaffrey, Daniel F</creatorcontrib><creatorcontrib>Ridgeway, Greg</creatorcontrib><creatorcontrib>Morral, Andrew R</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>APA PsycArticles®</collection><collection>ProQuest One Psychology</collection><jtitle>Psychological methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCaffrey, Daniel F</au><au>Ridgeway, Greg</au><au>Morral, Andrew R</au><au>West, Stephen G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ685073</ericid><atitle>Propensity Score Estimation With Boosted Regression for Evaluating Causal Effects in Observational Studies</atitle><jtitle>Psychological methods</jtitle><addtitle>Psychol Methods</addtitle><date>2004-12-01</date><risdate>2004</risdate><volume>9</volume><issue>4</issue><spage>403</spage><epage>425</epage><pages>403-425</pages><issn>1082-989X</issn><eissn>1939-1463</eissn><abstract>Causal effect modeling with naturalistic rather than experimental data is challenging. In observational studies participants in different treatment conditions may also differ on pretreatment characteristics that influence outcomes. Propensity score methods can theoretically eliminate these confounds for all observed covariates, but accurate estimation of propensity scores is impeded by large numbers of covariates, uncertain functional forms for their associations with treatment selection, and other problems. This article demonstrates that boosting, a modern statistical technique, can overcome many of these obstacles. The authors illustrate this approach with a study of adolescent probationers in substance abuse treatment programs. Propensity score weights estimated using boosting eliminate most pretreatment group differences and substantially alter the apparent relative effects of adolescent substance abuse treatment.</abstract><cop>Washington, DC</cop><pub>American Psychological Association</pub><pmid>15598095</pmid><doi>10.1037/1082-989X.9.4.403</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-6911-0804</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1082-989X
ispartof Psychological methods, 2004-12, Vol.9 (4), p.403-425
issn 1082-989X
1939-1463
language eng
recordid cdi_proquest_journals_614400197
source MEDLINE; EBSCOhost APA PsycARTICLES
subjects Adolescents
Biological and medical sciences
Causal Analysis
Causal Models
Drug Abuse
Evaluation Methods
Evaluation Research
Evaluation Studies as Topic
Female
Fundamental and applied biological sciences. Psychology
Human
Humans
Male
Models, Psychological
Observation
Outcome Assessment (Health Care) - statistics & numerical data
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Psychometrics - statistics & numerical data
Psychometrics. Statistics. Methodology
Regression (Statistics)
Scores
Statistical Analysis
Statistical Estimation
Statistical Inference
Statistical Measurement
Statistics. Mathematics
Substance Abuse
Substance Use Treatment
Substance-Related Disorders - therapy
Treatment Outcomes
title Propensity Score Estimation With Boosted Regression for Evaluating Causal Effects in Observational Studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A09%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propensity%20Score%20Estimation%20With%20Boosted%20Regression%20for%20Evaluating%20Causal%20Effects%20in%20Observational%20Studies&rft.jtitle=Psychological%20methods&rft.au=McCaffrey,%20Daniel%20F&rft.date=2004-12-01&rft.volume=9&rft.issue=4&rft.spage=403&rft.epage=425&rft.pages=403-425&rft.issn=1082-989X&rft.eissn=1939-1463&rft_id=info:doi/10.1037/1082-989X.9.4.403&rft_dat=%3Cproquest_cross%3E614400197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=614400197&rft_id=info:pmid/15598095&rft_ericid=EJ685073&rfr_iscdi=true