An acceleration method for Ten Berge et al.’s algorithm for orthogonal INDSCAL
INDSCAL (INdividual Differences SCALing) is a useful technique for investigating both common and unique aspects of K similarity data matrices. The model postulates a common stimulus configuration in a low-dimensional Euclidean space, while representing differences among the K data matrices by differ...
Gespeichert in:
Veröffentlicht in: | Computational statistics 2010-09, Vol.25 (3), p.409-428 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 428 |
---|---|
container_issue | 3 |
container_start_page | 409 |
container_title | Computational statistics |
container_volume | 25 |
creator | Takane, Yoshio Jung, Kwanghee Hwang, Heungsun |
description | INDSCAL (INdividual Differences SCALing) is a useful technique for investigating both common and unique aspects of
K
similarity data matrices. The model postulates a common stimulus configuration in a low-dimensional Euclidean space, while representing differences among the
K
data matrices by differential weighting of dimensions by different data sources. Since Carroll and Chang proposed their algorithm for INDSCAL, several issues have been raised: non-symmetric solutions, negative saliency weights, and the degeneracy problem. Orthogonal INDSCAL (O-INDSCAL) which imposes orthogonality constraints on the matrix of stimulus configuration has been proposed to overcome some of these difficulties. Two algorithms have been proposed for O-INDSCAL, one by Ten Berge, Knol, and Kiers, and the other by Trendafilov. In this paper, an acceleration technique called minimal polynomial extrapolation is incorporated in Ten Berge et al.’s algorithm. Simulation studies are conducted to compare the performance of the three algorithms (Ten Berge et al.’s original algorithm, the accelerated algorithm, and Trendafilov’s). Possible extensions of the accelerated algorithm to similar situations are also suggested. |
doi_str_mv | 10.1007/s00180-010-0184-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_613765412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085099751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-cfe651408d7d8724297ce61614069e1d038c58717e9a1f1917c7de4f80dc7fcb3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqVwAHYW-xSPk9jOspS_ShUIUdaWcSZpqzQudrpgxzXYcRaOwklwCRIrFqNZzPee3jxCToGNgDF5HhgDxRIGu1FZIvbIAASkSSFytU8GrMjSJGOCH5KjEFaMcS45DMjDuKXGWmzQm27pWrrGbuFKWjlP59jSC_Q1Uuw-P0wz-np7D9Q0tfPLbrH-YZyPeO1a09Dp3eXjZDw7JgeVaQKe_O4hebq-mk9uk9n9zTTeE5sq6BJbocghY6qUpZI844W0KGLkGLJAKFmqbK4kSCwMVFCAtLLErFKstLKyz-mQnPW-G-9ethg6vXJbH4MEHf-WIs-ARwh6yHoXgsdKb_xybfyrBqZ3xem-OB2L07vitIga3mtCZNsa_Z_x_6Jv9XJwRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>613765412</pqid></control><display><type>article</type><title>An acceleration method for Ten Berge et al.’s algorithm for orthogonal INDSCAL</title><source>SpringerNature Journals</source><creator>Takane, Yoshio ; Jung, Kwanghee ; Hwang, Heungsun</creator><creatorcontrib>Takane, Yoshio ; Jung, Kwanghee ; Hwang, Heungsun</creatorcontrib><description>INDSCAL (INdividual Differences SCALing) is a useful technique for investigating both common and unique aspects of
K
similarity data matrices. The model postulates a common stimulus configuration in a low-dimensional Euclidean space, while representing differences among the
K
data matrices by differential weighting of dimensions by different data sources. Since Carroll and Chang proposed their algorithm for INDSCAL, several issues have been raised: non-symmetric solutions, negative saliency weights, and the degeneracy problem. Orthogonal INDSCAL (O-INDSCAL) which imposes orthogonality constraints on the matrix of stimulus configuration has been proposed to overcome some of these difficulties. Two algorithms have been proposed for O-INDSCAL, one by Ten Berge, Knol, and Kiers, and the other by Trendafilov. In this paper, an acceleration technique called minimal polynomial extrapolation is incorporated in Ten Berge et al.’s algorithm. Simulation studies are conducted to compare the performance of the three algorithms (Ten Berge et al.’s original algorithm, the accelerated algorithm, and Trendafilov’s). Possible extensions of the accelerated algorithm to similar situations are also suggested.</description><identifier>ISSN: 0943-4062</identifier><identifier>EISSN: 1613-9658</identifier><identifier>DOI: 10.1007/s00180-010-0184-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algorithms ; Data analysis ; Dynamical systems ; Economic Theory/Quantitative Economics/Mathematical Methods ; Euclidean space ; Mathematics and Statistics ; Original Paper ; Polynomials ; Probability and Statistics in Computer Science ; Probability Theory and Stochastic Processes ; Statistics ; Studies</subject><ispartof>Computational statistics, 2010-09, Vol.25 (3), p.409-428</ispartof><rights>Springer-Verlag 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-cfe651408d7d8724297ce61614069e1d038c58717e9a1f1917c7de4f80dc7fcb3</citedby><cites>FETCH-LOGICAL-c381t-cfe651408d7d8724297ce61614069e1d038c58717e9a1f1917c7de4f80dc7fcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00180-010-0184-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00180-010-0184-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Takane, Yoshio</creatorcontrib><creatorcontrib>Jung, Kwanghee</creatorcontrib><creatorcontrib>Hwang, Heungsun</creatorcontrib><title>An acceleration method for Ten Berge et al.’s algorithm for orthogonal INDSCAL</title><title>Computational statistics</title><addtitle>Comput Stat</addtitle><description>INDSCAL (INdividual Differences SCALing) is a useful technique for investigating both common and unique aspects of
K
similarity data matrices. The model postulates a common stimulus configuration in a low-dimensional Euclidean space, while representing differences among the
K
data matrices by differential weighting of dimensions by different data sources. Since Carroll and Chang proposed their algorithm for INDSCAL, several issues have been raised: non-symmetric solutions, negative saliency weights, and the degeneracy problem. Orthogonal INDSCAL (O-INDSCAL) which imposes orthogonality constraints on the matrix of stimulus configuration has been proposed to overcome some of these difficulties. Two algorithms have been proposed for O-INDSCAL, one by Ten Berge, Knol, and Kiers, and the other by Trendafilov. In this paper, an acceleration technique called minimal polynomial extrapolation is incorporated in Ten Berge et al.’s algorithm. Simulation studies are conducted to compare the performance of the three algorithms (Ten Berge et al.’s original algorithm, the accelerated algorithm, and Trendafilov’s). Possible extensions of the accelerated algorithm to similar situations are also suggested.</description><subject>Algorithms</subject><subject>Data analysis</subject><subject>Dynamical systems</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Euclidean space</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Polynomials</subject><subject>Probability and Statistics in Computer Science</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Statistics</subject><subject>Studies</subject><issn>0943-4062</issn><issn>1613-9658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1OwzAQhS0EEqVwAHYW-xSPk9jOspS_ShUIUdaWcSZpqzQudrpgxzXYcRaOwklwCRIrFqNZzPee3jxCToGNgDF5HhgDxRIGu1FZIvbIAASkSSFytU8GrMjSJGOCH5KjEFaMcS45DMjDuKXGWmzQm27pWrrGbuFKWjlP59jSC_Q1Uuw-P0wz-np7D9Q0tfPLbrH-YZyPeO1a09Dp3eXjZDw7JgeVaQKe_O4hebq-mk9uk9n9zTTeE5sq6BJbocghY6qUpZI844W0KGLkGLJAKFmqbK4kSCwMVFCAtLLErFKstLKyz-mQnPW-G-9ethg6vXJbH4MEHf-WIs-ARwh6yHoXgsdKb_xybfyrBqZ3xem-OB2L07vitIga3mtCZNsa_Z_x_6Jv9XJwRw</recordid><startdate>20100901</startdate><enddate>20100901</enddate><creator>Takane, Yoshio</creator><creator>Jung, Kwanghee</creator><creator>Hwang, Heungsun</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100901</creationdate><title>An acceleration method for Ten Berge et al.’s algorithm for orthogonal INDSCAL</title><author>Takane, Yoshio ; Jung, Kwanghee ; Hwang, Heungsun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-cfe651408d7d8724297ce61614069e1d038c58717e9a1f1917c7de4f80dc7fcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Data analysis</topic><topic>Dynamical systems</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Euclidean space</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Polynomials</topic><topic>Probability and Statistics in Computer Science</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takane, Yoshio</creatorcontrib><creatorcontrib>Jung, Kwanghee</creatorcontrib><creatorcontrib>Hwang, Heungsun</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Computational statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takane, Yoshio</au><au>Jung, Kwanghee</au><au>Hwang, Heungsun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An acceleration method for Ten Berge et al.’s algorithm for orthogonal INDSCAL</atitle><jtitle>Computational statistics</jtitle><stitle>Comput Stat</stitle><date>2010-09-01</date><risdate>2010</risdate><volume>25</volume><issue>3</issue><spage>409</spage><epage>428</epage><pages>409-428</pages><issn>0943-4062</issn><eissn>1613-9658</eissn><abstract>INDSCAL (INdividual Differences SCALing) is a useful technique for investigating both common and unique aspects of
K
similarity data matrices. The model postulates a common stimulus configuration in a low-dimensional Euclidean space, while representing differences among the
K
data matrices by differential weighting of dimensions by different data sources. Since Carroll and Chang proposed their algorithm for INDSCAL, several issues have been raised: non-symmetric solutions, negative saliency weights, and the degeneracy problem. Orthogonal INDSCAL (O-INDSCAL) which imposes orthogonality constraints on the matrix of stimulus configuration has been proposed to overcome some of these difficulties. Two algorithms have been proposed for O-INDSCAL, one by Ten Berge, Knol, and Kiers, and the other by Trendafilov. In this paper, an acceleration technique called minimal polynomial extrapolation is incorporated in Ten Berge et al.’s algorithm. Simulation studies are conducted to compare the performance of the three algorithms (Ten Berge et al.’s original algorithm, the accelerated algorithm, and Trendafilov’s). Possible extensions of the accelerated algorithm to similar situations are also suggested.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s00180-010-0184-6</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0943-4062 |
ispartof | Computational statistics, 2010-09, Vol.25 (3), p.409-428 |
issn | 0943-4062 1613-9658 |
language | eng |
recordid | cdi_proquest_journals_613765412 |
source | SpringerNature Journals |
subjects | Algorithms Data analysis Dynamical systems Economic Theory/Quantitative Economics/Mathematical Methods Euclidean space Mathematics and Statistics Original Paper Polynomials Probability and Statistics in Computer Science Probability Theory and Stochastic Processes Statistics Studies |
title | An acceleration method for Ten Berge et al.’s algorithm for orthogonal INDSCAL |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20acceleration%20method%20for%20Ten%20Berge%20et%C2%A0al.%E2%80%99s%20algorithm%20for%20orthogonal%20INDSCAL&rft.jtitle=Computational%20statistics&rft.au=Takane,%20Yoshio&rft.date=2010-09-01&rft.volume=25&rft.issue=3&rft.spage=409&rft.epage=428&rft.pages=409-428&rft.issn=0943-4062&rft.eissn=1613-9658&rft_id=info:doi/10.1007/s00180-010-0184-6&rft_dat=%3Cproquest_cross%3E2085099751%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=613765412&rft_id=info:pmid/&rfr_iscdi=true |