Solubility of airborne radioactive fuel particles from the Chernobyl reactor and implication to dose
Airborne particles of nuclear fuel from the Chernobyl reactor that had been collected on air filters and stored, were characterised using in vitro dissolution tests to assess effective doses after their inhalation. As solvent, the Gamble biological fluid was used to simulate lung fluid. The solubili...
Gespeichert in:
Veröffentlicht in: | Radiation and environmental biophysics 2004-05, Vol.43 (1), p.43-49 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | 1 |
container_start_page | 43 |
container_title | Radiation and environmental biophysics |
container_volume | 43 |
creator | Garger, E K Sazhenyuk, A D Odintzov, A A Paretzke, H G Roth, P Tschiersch, J |
description | Airborne particles of nuclear fuel from the Chernobyl reactor that had been collected on air filters and stored, were characterised using in vitro dissolution tests to assess effective doses after their inhalation. As solvent, the Gamble biological fluid was used to simulate lung fluid. The solubility of the measured radionuclides decreased in the order (137)Cs>(90)Sr>>(241)Am>or=(239+240)Pu in the simulated lung fluid. The dissolution rate constant of e.g. (239+249)Pu ranged from 0.72 to 5.4 x 10(-6) g x cm(-2) d(-1) and decreased (for all nuclides) with increasing particle size as predicted from theoretical considerations. Considering the inhalation dose, decreasing dose with size and increasing doses with lower solubility may partly counterbalance each other for (137)Cs and (90)Sr. On the other hand, for (239)Pu and (241)Am larger particles and associated lower solubility both change the resulting dose in the same direction towards lower values. The comparison of the experimentally determined dose coefficients with ICRP values indicates that nuclear fuel particles closely resemble type M material characteristics for (137)Cs and (90)Sr and type S material characteristics for (239)Pu and (241)Am. |
doi_str_mv | 10.1007/s00411-004-0226-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_613524900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083442251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-41a9f5a33a74a025b26693ec6e3b03b1535d3dad9409a5b3708d891dafdd1dc13</originalsourceid><addsrcrecordid>eNpFkE9LxDAUxIMouq5-AC8SvFffS9J2c5TFf7DgQQVvIWlSNkvb1KQV-u3tsgteZi4z8x4_Qm4Q7hGgfEgAAjGbNQPGimw6IQsUnGUMpDwlC-CAWcHF9wW5TGkHgGVRyHNygUJK5IVcEPsRmtH4xg8TDTXVPpoQO0ejtj7oavC_jtaja2iv4-CrxiVax9DSYevoeutiF8zU0OjmaIhUd5b6tm98pQcfOjoEakNyV-Ss1k1y10dfkq_np8_1a7Z5f3lbP26yijMxZAK1rHPNuS6FBpYbNn_LXVU4boAbzHluudVWCpA6N7yElV1JtLq2Fm2FfEnuDrt9DD-jS4PahTF280lVIM-ZkABzCA-hKoaUoqtVH32r46QQ1B6rOmBVs6o9VjXNndvj8GhaZ_8bR478D9TCdIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>613524900</pqid></control><display><type>article</type><title>Solubility of airborne radioactive fuel particles from the Chernobyl reactor and implication to dose</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Garger, E K ; Sazhenyuk, A D ; Odintzov, A A ; Paretzke, H G ; Roth, P ; Tschiersch, J</creator><creatorcontrib>Garger, E K ; Sazhenyuk, A D ; Odintzov, A A ; Paretzke, H G ; Roth, P ; Tschiersch, J</creatorcontrib><description>Airborne particles of nuclear fuel from the Chernobyl reactor that had been collected on air filters and stored, were characterised using in vitro dissolution tests to assess effective doses after their inhalation. As solvent, the Gamble biological fluid was used to simulate lung fluid. The solubility of the measured radionuclides decreased in the order (137)Cs>(90)Sr>>(241)Am>or=(239+240)Pu in the simulated lung fluid. The dissolution rate constant of e.g. (239+249)Pu ranged from 0.72 to 5.4 x 10(-6) g x cm(-2) d(-1) and decreased (for all nuclides) with increasing particle size as predicted from theoretical considerations. Considering the inhalation dose, decreasing dose with size and increasing doses with lower solubility may partly counterbalance each other for (137)Cs and (90)Sr. On the other hand, for (239)Pu and (241)Am larger particles and associated lower solubility both change the resulting dose in the same direction towards lower values. The comparison of the experimentally determined dose coefficients with ICRP values indicates that nuclear fuel particles closely resemble type M material characteristics for (137)Cs and (90)Sr and type S material characteristics for (239)Pu and (241)Am.</description><identifier>ISSN: 0301-634X</identifier><identifier>EISSN: 1432-2099</identifier><identifier>DOI: 10.1007/s00411-004-0226-y</identifier><identifier>PMID: 14991369</identifier><language>eng</language><publisher>Germany: Springer Nature B.V</publisher><subject>Aerosols - analysis ; Air filters ; Bronchoalveolar Lavage Fluid - chemistry ; Chernobyl Nuclear Accident ; Filtration ; Inhalation ; Models, Theoretical ; Nuclear fuels ; Particle Size ; Power Plants ; Radiation Dosage ; Radioactive Fallout - analysis ; Radioactive Hazard Release ; Radioisotopes - analysis ; Reactors ; Solubility</subject><ispartof>Radiation and environmental biophysics, 2004-05, Vol.43 (1), p.43-49</ispartof><rights>Springer-Verlag 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-41a9f5a33a74a025b26693ec6e3b03b1535d3dad9409a5b3708d891dafdd1dc13</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14991369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garger, E K</creatorcontrib><creatorcontrib>Sazhenyuk, A D</creatorcontrib><creatorcontrib>Odintzov, A A</creatorcontrib><creatorcontrib>Paretzke, H G</creatorcontrib><creatorcontrib>Roth, P</creatorcontrib><creatorcontrib>Tschiersch, J</creatorcontrib><title>Solubility of airborne radioactive fuel particles from the Chernobyl reactor and implication to dose</title><title>Radiation and environmental biophysics</title><addtitle>Radiat Environ Biophys</addtitle><description>Airborne particles of nuclear fuel from the Chernobyl reactor that had been collected on air filters and stored, were characterised using in vitro dissolution tests to assess effective doses after their inhalation. As solvent, the Gamble biological fluid was used to simulate lung fluid. The solubility of the measured radionuclides decreased in the order (137)Cs>(90)Sr>>(241)Am>or=(239+240)Pu in the simulated lung fluid. The dissolution rate constant of e.g. (239+249)Pu ranged from 0.72 to 5.4 x 10(-6) g x cm(-2) d(-1) and decreased (for all nuclides) with increasing particle size as predicted from theoretical considerations. Considering the inhalation dose, decreasing dose with size and increasing doses with lower solubility may partly counterbalance each other for (137)Cs and (90)Sr. On the other hand, for (239)Pu and (241)Am larger particles and associated lower solubility both change the resulting dose in the same direction towards lower values. The comparison of the experimentally determined dose coefficients with ICRP values indicates that nuclear fuel particles closely resemble type M material characteristics for (137)Cs and (90)Sr and type S material characteristics for (239)Pu and (241)Am.</description><subject>Aerosols - analysis</subject><subject>Air filters</subject><subject>Bronchoalveolar Lavage Fluid - chemistry</subject><subject>Chernobyl Nuclear Accident</subject><subject>Filtration</subject><subject>Inhalation</subject><subject>Models, Theoretical</subject><subject>Nuclear fuels</subject><subject>Particle Size</subject><subject>Power Plants</subject><subject>Radiation Dosage</subject><subject>Radioactive Fallout - analysis</subject><subject>Radioactive Hazard Release</subject><subject>Radioisotopes - analysis</subject><subject>Reactors</subject><subject>Solubility</subject><issn>0301-634X</issn><issn>1432-2099</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpFkE9LxDAUxIMouq5-AC8SvFffS9J2c5TFf7DgQQVvIWlSNkvb1KQV-u3tsgteZi4z8x4_Qm4Q7hGgfEgAAjGbNQPGimw6IQsUnGUMpDwlC-CAWcHF9wW5TGkHgGVRyHNygUJK5IVcEPsRmtH4xg8TDTXVPpoQO0ejtj7oavC_jtaja2iv4-CrxiVax9DSYevoeutiF8zU0OjmaIhUd5b6tm98pQcfOjoEakNyV-Ss1k1y10dfkq_np8_1a7Z5f3lbP26yijMxZAK1rHPNuS6FBpYbNn_LXVU4boAbzHluudVWCpA6N7yElV1JtLq2Fm2FfEnuDrt9DD-jS4PahTF280lVIM-ZkABzCA-hKoaUoqtVH32r46QQ1B6rOmBVs6o9VjXNndvj8GhaZ_8bR478D9TCdIg</recordid><startdate>200405</startdate><enddate>200405</enddate><creator>Garger, E K</creator><creator>Sazhenyuk, A D</creator><creator>Odintzov, A A</creator><creator>Paretzke, H G</creator><creator>Roth, P</creator><creator>Tschiersch, J</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>200405</creationdate><title>Solubility of airborne radioactive fuel particles from the Chernobyl reactor and implication to dose</title><author>Garger, E K ; Sazhenyuk, A D ; Odintzov, A A ; Paretzke, H G ; Roth, P ; Tschiersch, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-41a9f5a33a74a025b26693ec6e3b03b1535d3dad9409a5b3708d891dafdd1dc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Aerosols - analysis</topic><topic>Air filters</topic><topic>Bronchoalveolar Lavage Fluid - chemistry</topic><topic>Chernobyl Nuclear Accident</topic><topic>Filtration</topic><topic>Inhalation</topic><topic>Models, Theoretical</topic><topic>Nuclear fuels</topic><topic>Particle Size</topic><topic>Power Plants</topic><topic>Radiation Dosage</topic><topic>Radioactive Fallout - analysis</topic><topic>Radioactive Hazard Release</topic><topic>Radioisotopes - analysis</topic><topic>Reactors</topic><topic>Solubility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garger, E K</creatorcontrib><creatorcontrib>Sazhenyuk, A D</creatorcontrib><creatorcontrib>Odintzov, A A</creatorcontrib><creatorcontrib>Paretzke, H G</creatorcontrib><creatorcontrib>Roth, P</creatorcontrib><creatorcontrib>Tschiersch, J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Radiation and environmental biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garger, E K</au><au>Sazhenyuk, A D</au><au>Odintzov, A A</au><au>Paretzke, H G</au><au>Roth, P</au><au>Tschiersch, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solubility of airborne radioactive fuel particles from the Chernobyl reactor and implication to dose</atitle><jtitle>Radiation and environmental biophysics</jtitle><addtitle>Radiat Environ Biophys</addtitle><date>2004-05</date><risdate>2004</risdate><volume>43</volume><issue>1</issue><spage>43</spage><epage>49</epage><pages>43-49</pages><issn>0301-634X</issn><eissn>1432-2099</eissn><abstract>Airborne particles of nuclear fuel from the Chernobyl reactor that had been collected on air filters and stored, were characterised using in vitro dissolution tests to assess effective doses after their inhalation. As solvent, the Gamble biological fluid was used to simulate lung fluid. The solubility of the measured radionuclides decreased in the order (137)Cs>(90)Sr>>(241)Am>or=(239+240)Pu in the simulated lung fluid. The dissolution rate constant of e.g. (239+249)Pu ranged from 0.72 to 5.4 x 10(-6) g x cm(-2) d(-1) and decreased (for all nuclides) with increasing particle size as predicted from theoretical considerations. Considering the inhalation dose, decreasing dose with size and increasing doses with lower solubility may partly counterbalance each other for (137)Cs and (90)Sr. On the other hand, for (239)Pu and (241)Am larger particles and associated lower solubility both change the resulting dose in the same direction towards lower values. The comparison of the experimentally determined dose coefficients with ICRP values indicates that nuclear fuel particles closely resemble type M material characteristics for (137)Cs and (90)Sr and type S material characteristics for (239)Pu and (241)Am.</abstract><cop>Germany</cop><pub>Springer Nature B.V</pub><pmid>14991369</pmid><doi>10.1007/s00411-004-0226-y</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-634X |
ispartof | Radiation and environmental biophysics, 2004-05, Vol.43 (1), p.43-49 |
issn | 0301-634X 1432-2099 |
language | eng |
recordid | cdi_proquest_journals_613524900 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Aerosols - analysis Air filters Bronchoalveolar Lavage Fluid - chemistry Chernobyl Nuclear Accident Filtration Inhalation Models, Theoretical Nuclear fuels Particle Size Power Plants Radiation Dosage Radioactive Fallout - analysis Radioactive Hazard Release Radioisotopes - analysis Reactors Solubility |
title | Solubility of airborne radioactive fuel particles from the Chernobyl reactor and implication to dose |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A38%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solubility%20of%20airborne%20radioactive%20fuel%20particles%20from%20the%20Chernobyl%20reactor%20and%20implication%20to%20dose&rft.jtitle=Radiation%20and%20environmental%20biophysics&rft.au=Garger,%20E%20K&rft.date=2004-05&rft.volume=43&rft.issue=1&rft.spage=43&rft.epage=49&rft.pages=43-49&rft.issn=0301-634X&rft.eissn=1432-2099&rft_id=info:doi/10.1007/s00411-004-0226-y&rft_dat=%3Cproquest_cross%3E2083442251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=613524900&rft_id=info:pmid/14991369&rfr_iscdi=true |