The Ocean―Land―Atmosphere Model: Optimization and Evaluation of Simulated Radiative Fluxes and Precipitation

This work continues the presentation and evaluation of the Ocean–Land–Atmosphere Model (OLAM), focusing on the model’s ability to represent radiation and precipitation. OLAM is a new, state-of-the-art earth system model, capable of user-specified grid resolution and local mesh refinement. An objecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly weather review 2010-05, Vol.138 (5), p.1923-1939
Hauptverfasser: MEDVIGY, David, WALKO, Robert L, OTTE, Martin J, AVISSAR, Roni
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1939
container_issue 5
container_start_page 1923
container_title Monthly weather review
container_volume 138
creator MEDVIGY, David
WALKO, Robert L
OTTE, Martin J
AVISSAR, Roni
description This work continues the presentation and evaluation of the Ocean–Land–Atmosphere Model (OLAM), focusing on the model’s ability to represent radiation and precipitation. OLAM is a new, state-of-the-art earth system model, capable of user-specified grid resolution and local mesh refinement. An objective optimization of the microphysics parameterization is carried out. Data products from the Clouds and the Earth’s Radiant Energy System (CERES) and the Global Precipitation Climatology Project (GPCP) are used to construct a maximum likelihood function, and thousands of simulations using different values for key parameters are carried out. Shortwave fluxes are found to be highly sensitive to both the density of cloud droplets and the assumed shape of the cloud droplet diameter distribution function. Because there is considerable uncertainty in which values for these parameters to use in climate models, they are targeted as the tunable parameters of the objective optimization procedure, which identified high-likelihood volumes of parameter space as well as parameter uncertainties and covariances. Once optimized, the model closely matches observed large-scale radiative fluxes and precipitation. The impact of model resolution is also tested. At finer characteristic length scales (CLS), smaller-scale features such as the ITCZ are better resolved. It is also found that the Amazon was much better simulated at 100- than 200-km CLS. Furthermore, a simulation using OLAM’s variable resolution functionality to cover South America with 100-km CLS and the rest of the world with 200-km CLS generates a precipitation pattern in the Amazon similar to the global 100-km CLS run.
doi_str_mv 10.1175/2009MWR3131.1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_612688588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2081730101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-a2e6ee4f1f6757c7f39d172ddb67e9a089ce4f45c1e0e5636471e5e2cffe11533</originalsourceid><addsrcrecordid>eNpNkM1Kw0AUhQdRsFaX7oPgMnV-MjMZd6VYFVoqteIyjJM7dEqaxJmkqCtfwhf0SYxtEVeHe-93z4GD0DnBA0Ikv6IYq-nznBFGBuQA9QinOMaJYoeohzGVMRZJcoxOQlhhjIVIaA_ViyVEMwO6_P78mugy72TYrKtQL8FDNK1yKK6jWd24tfvQjavKqIOim40u2t1Y2ejRrdtCN5BHc527br2BaFy0bxC28IMH42rXbPlTdGR1EeBsr330NL5ZjO7iyez2fjScxIYx1sSaggBILLFCcmmkZSonkub5i5CgNE6V6a4JNwQwcMFEIglwoMZaIIQz1kcXO9_aV68thCZbVa0vu8hMECrSlKdpB8U7yPgqBA82q71ba_-eEZz9dpr96zQjHX-5N9XB6MJ6XRoX_p4oVUpSxdgPMPV5iw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>612688588</pqid></control><display><type>article</type><title>The Ocean―Land―Atmosphere Model: Optimization and Evaluation of Simulated Radiative Fluxes and Precipitation</title><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>MEDVIGY, David ; WALKO, Robert L ; OTTE, Martin J ; AVISSAR, Roni</creator><creatorcontrib>MEDVIGY, David ; WALKO, Robert L ; OTTE, Martin J ; AVISSAR, Roni</creatorcontrib><description>This work continues the presentation and evaluation of the Ocean–Land–Atmosphere Model (OLAM), focusing on the model’s ability to represent radiation and precipitation. OLAM is a new, state-of-the-art earth system model, capable of user-specified grid resolution and local mesh refinement. An objective optimization of the microphysics parameterization is carried out. Data products from the Clouds and the Earth’s Radiant Energy System (CERES) and the Global Precipitation Climatology Project (GPCP) are used to construct a maximum likelihood function, and thousands of simulations using different values for key parameters are carried out. Shortwave fluxes are found to be highly sensitive to both the density of cloud droplets and the assumed shape of the cloud droplet diameter distribution function. Because there is considerable uncertainty in which values for these parameters to use in climate models, they are targeted as the tunable parameters of the objective optimization procedure, which identified high-likelihood volumes of parameter space as well as parameter uncertainties and covariances. Once optimized, the model closely matches observed large-scale radiative fluxes and precipitation. The impact of model resolution is also tested. At finer characteristic length scales (CLS), smaller-scale features such as the ITCZ are better resolved. It is also found that the Amazon was much better simulated at 100- than 200-km CLS. Furthermore, a simulation using OLAM’s variable resolution functionality to cover South America with 100-km CLS and the rest of the world with 200-km CLS generates a precipitation pattern in the Amazon similar to the global 100-km CLS run.</description><identifier>ISSN: 0027-0644</identifier><identifier>EISSN: 1520-0493</identifier><identifier>DOI: 10.1175/2009MWR3131.1</identifier><identifier>CODEN: MWREAB</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Atmosphere ; Budgets ; Climate models ; Climatology ; Earth, ocean, space ; Exact sciences and technology ; External geophysics ; Meteorology ; Optimization ; Physics of the oceans ; Sea-air exchange processes ; Studies ; Water in the atmosphere (humidity, clouds, evaporation, precipitation)</subject><ispartof>Monthly weather review, 2010-05, Vol.138 (5), p.1923-1939</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society May 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-a2e6ee4f1f6757c7f39d172ddb67e9a089ce4f45c1e0e5636471e5e2cffe11533</citedby><cites>FETCH-LOGICAL-c333t-a2e6ee4f1f6757c7f39d172ddb67e9a089ce4f45c1e0e5636471e5e2cffe11533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,3668,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22997293$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>MEDVIGY, David</creatorcontrib><creatorcontrib>WALKO, Robert L</creatorcontrib><creatorcontrib>OTTE, Martin J</creatorcontrib><creatorcontrib>AVISSAR, Roni</creatorcontrib><title>The Ocean―Land―Atmosphere Model: Optimization and Evaluation of Simulated Radiative Fluxes and Precipitation</title><title>Monthly weather review</title><description>This work continues the presentation and evaluation of the Ocean–Land–Atmosphere Model (OLAM), focusing on the model’s ability to represent radiation and precipitation. OLAM is a new, state-of-the-art earth system model, capable of user-specified grid resolution and local mesh refinement. An objective optimization of the microphysics parameterization is carried out. Data products from the Clouds and the Earth’s Radiant Energy System (CERES) and the Global Precipitation Climatology Project (GPCP) are used to construct a maximum likelihood function, and thousands of simulations using different values for key parameters are carried out. Shortwave fluxes are found to be highly sensitive to both the density of cloud droplets and the assumed shape of the cloud droplet diameter distribution function. Because there is considerable uncertainty in which values for these parameters to use in climate models, they are targeted as the tunable parameters of the objective optimization procedure, which identified high-likelihood volumes of parameter space as well as parameter uncertainties and covariances. Once optimized, the model closely matches observed large-scale radiative fluxes and precipitation. The impact of model resolution is also tested. At finer characteristic length scales (CLS), smaller-scale features such as the ITCZ are better resolved. It is also found that the Amazon was much better simulated at 100- than 200-km CLS. Furthermore, a simulation using OLAM’s variable resolution functionality to cover South America with 100-km CLS and the rest of the world with 200-km CLS generates a precipitation pattern in the Amazon similar to the global 100-km CLS run.</description><subject>Atmosphere</subject><subject>Budgets</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Meteorology</subject><subject>Optimization</subject><subject>Physics of the oceans</subject><subject>Sea-air exchange processes</subject><subject>Studies</subject><subject>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</subject><issn>0027-0644</issn><issn>1520-0493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpNkM1Kw0AUhQdRsFaX7oPgMnV-MjMZd6VYFVoqteIyjJM7dEqaxJmkqCtfwhf0SYxtEVeHe-93z4GD0DnBA0Ikv6IYq-nznBFGBuQA9QinOMaJYoeohzGVMRZJcoxOQlhhjIVIaA_ViyVEMwO6_P78mugy72TYrKtQL8FDNK1yKK6jWd24tfvQjavKqIOim40u2t1Y2ejRrdtCN5BHc527br2BaFy0bxC28IMH42rXbPlTdGR1EeBsr330NL5ZjO7iyez2fjScxIYx1sSaggBILLFCcmmkZSonkub5i5CgNE6V6a4JNwQwcMFEIglwoMZaIIQz1kcXO9_aV68thCZbVa0vu8hMECrSlKdpB8U7yPgqBA82q71ba_-eEZz9dpr96zQjHX-5N9XB6MJ6XRoX_p4oVUpSxdgPMPV5iw</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>MEDVIGY, David</creator><creator>WALKO, Robert L</creator><creator>OTTE, Martin J</creator><creator>AVISSAR, Roni</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20100501</creationdate><title>The Ocean―Land―Atmosphere Model: Optimization and Evaluation of Simulated Radiative Fluxes and Precipitation</title><author>MEDVIGY, David ; WALKO, Robert L ; OTTE, Martin J ; AVISSAR, Roni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-a2e6ee4f1f6757c7f39d172ddb67e9a089ce4f45c1e0e5636471e5e2cffe11533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Atmosphere</topic><topic>Budgets</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Meteorology</topic><topic>Optimization</topic><topic>Physics of the oceans</topic><topic>Sea-air exchange processes</topic><topic>Studies</topic><topic>Water in the atmosphere (humidity, clouds, evaporation, precipitation)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MEDVIGY, David</creatorcontrib><creatorcontrib>WALKO, Robert L</creatorcontrib><creatorcontrib>OTTE, Martin J</creatorcontrib><creatorcontrib>AVISSAR, Roni</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Monthly weather review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MEDVIGY, David</au><au>WALKO, Robert L</au><au>OTTE, Martin J</au><au>AVISSAR, Roni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Ocean―Land―Atmosphere Model: Optimization and Evaluation of Simulated Radiative Fluxes and Precipitation</atitle><jtitle>Monthly weather review</jtitle><date>2010-05-01</date><risdate>2010</risdate><volume>138</volume><issue>5</issue><spage>1923</spage><epage>1939</epage><pages>1923-1939</pages><issn>0027-0644</issn><eissn>1520-0493</eissn><coden>MWREAB</coden><abstract>This work continues the presentation and evaluation of the Ocean–Land–Atmosphere Model (OLAM), focusing on the model’s ability to represent radiation and precipitation. OLAM is a new, state-of-the-art earth system model, capable of user-specified grid resolution and local mesh refinement. An objective optimization of the microphysics parameterization is carried out. Data products from the Clouds and the Earth’s Radiant Energy System (CERES) and the Global Precipitation Climatology Project (GPCP) are used to construct a maximum likelihood function, and thousands of simulations using different values for key parameters are carried out. Shortwave fluxes are found to be highly sensitive to both the density of cloud droplets and the assumed shape of the cloud droplet diameter distribution function. Because there is considerable uncertainty in which values for these parameters to use in climate models, they are targeted as the tunable parameters of the objective optimization procedure, which identified high-likelihood volumes of parameter space as well as parameter uncertainties and covariances. Once optimized, the model closely matches observed large-scale radiative fluxes and precipitation. The impact of model resolution is also tested. At finer characteristic length scales (CLS), smaller-scale features such as the ITCZ are better resolved. It is also found that the Amazon was much better simulated at 100- than 200-km CLS. Furthermore, a simulation using OLAM’s variable resolution functionality to cover South America with 100-km CLS and the rest of the world with 200-km CLS generates a precipitation pattern in the Amazon similar to the global 100-km CLS run.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/2009MWR3131.1</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-0644
ispartof Monthly weather review, 2010-05, Vol.138 (5), p.1923-1939
issn 0027-0644
1520-0493
language eng
recordid cdi_proquest_journals_612688588
source American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Atmosphere
Budgets
Climate models
Climatology
Earth, ocean, space
Exact sciences and technology
External geophysics
Meteorology
Optimization
Physics of the oceans
Sea-air exchange processes
Studies
Water in the atmosphere (humidity, clouds, evaporation, precipitation)
title The Ocean―Land―Atmosphere Model: Optimization and Evaluation of Simulated Radiative Fluxes and Precipitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A39%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Ocean%E2%80%95Land%E2%80%95Atmosphere%20Model:%20Optimization%20and%20Evaluation%20of%20Simulated%20Radiative%20Fluxes%20and%20Precipitation&rft.jtitle=Monthly%20weather%20review&rft.au=MEDVIGY,%20David&rft.date=2010-05-01&rft.volume=138&rft.issue=5&rft.spage=1923&rft.epage=1939&rft.pages=1923-1939&rft.issn=0027-0644&rft.eissn=1520-0493&rft.coden=MWREAB&rft_id=info:doi/10.1175/2009MWR3131.1&rft_dat=%3Cproquest_cross%3E2081730101%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=612688588&rft_id=info:pmid/&rfr_iscdi=true