Hydrogen Production via Photolytic Oxidation of Aqueous Sodium Sulfite Solutions

Sulfur dioxide (SO2) emission from coal-burning power plants and refinery operations has been implicated as a cause of acid rain and other air pollution related problems. The conventional treatment of SO2−contaminated air consists of two steps: SO2 absorption using an aqueous sodium hydroxide soluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2010-07, Vol.44 (13), p.5283-5288
Hauptverfasser: Huang, Cunping, Linkous, Clovis A, Adebiyi, Olawale, T-Raissi, Ali
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5288
container_issue 13
container_start_page 5283
container_title Environmental science & technology
container_volume 44
creator Huang, Cunping
Linkous, Clovis A
Adebiyi, Olawale
T-Raissi, Ali
description Sulfur dioxide (SO2) emission from coal-burning power plants and refinery operations has been implicated as a cause of acid rain and other air pollution related problems. The conventional treatment of SO2−contaminated air consists of two steps: SO2 absorption using an aqueous sodium hydroxide solution, forming aqueous sodium sulfite (Na2SO3), and Na2SO3 oxidation via air purging to produce sodium sulfate (Na2SO4). In this process, the potential energy of SO2 is lost. This paper presents a novel ultraviolet (UV) photolytic process for production of hydrogen from aqueous Na2SO3 solutions. The results show that the quantum efficiency of hydrogen production can reach 14.4% under illumination from a low pressure mercury lamp. The mechanism occurs via two competing reaction pathways that involve oxidation of SO3 2− to SO4 2− directly and through the dithionate (S2O6 2−) ion intermediate. The first route becomes dominant once a photostationary state for S2O6 2− is established. The initial pH of Na2SO3 solution plays an important role in determining both the hydrogen production rate and the final products of the photolytic oxidation. At initial solution pH of 9.80 Na2SO3 photo-oxidation generates Na2SO4 as the final reaction product, while Na2S2O6 is merely a reaction intermediate. The highest hydrogen production rate occurs when the initial solution pH is 7.55. Reduction in the initial solution pH to 5.93 results in disproportionation of HSO3 − to elemental sulfur and SO4 2− but no hydrogen production.
doi_str_mv 10.1021/es903766w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_609371548</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2079924801</sourcerecordid><originalsourceid>FETCH-LOGICAL-a339t-415b2e3654d10acfb87570a51dd714907642e10f6db989fc263e4f4b38b116ca3</originalsourceid><addsrcrecordid>eNpl0E1Lw0AQBuBFFFurB_-ABMGDh-hs9iObYylqhYKFKngLm_3QlDRbdxO1_97U1vbgaRjmYWZ4ETrHcIMhwbcmZEBSzr8OUB-zBGImGD5EfQBM4ozw1x46CWEOAAkBcYx6CTDMgPI-mo5X2rs3U0dT73SrmtLV0Wcpo-m7a1y1akoVPX2XWv4OnI2GH61xbYhmTpftIpq1lS0b07VVuybhFB1ZWQVztq0D9HJ_9zwax5Onh8fRcBJLQrImppgViSGcUY1BKluIlKUgGdY6xTSDlNPEYLBcF5nIrEo4MdTSgogCY64kGaDLzd6ld91LocnnrvV1dzLnkJEUMyo6dL1ByrsQvLH50pcL6Vc5hnwdXb6LrrMX24VtsTB6J_-y6sDVFsigZGW9rFUZ9i7JBBWp2Dupwv6p_wd_ALTWgeM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>609371548</pqid></control><display><type>article</type><title>Hydrogen Production via Photolytic Oxidation of Aqueous Sodium Sulfite Solutions</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Huang, Cunping ; Linkous, Clovis A ; Adebiyi, Olawale ; T-Raissi, Ali</creator><creatorcontrib>Huang, Cunping ; Linkous, Clovis A ; Adebiyi, Olawale ; T-Raissi, Ali</creatorcontrib><description>Sulfur dioxide (SO2) emission from coal-burning power plants and refinery operations has been implicated as a cause of acid rain and other air pollution related problems. The conventional treatment of SO2−contaminated air consists of two steps: SO2 absorption using an aqueous sodium hydroxide solution, forming aqueous sodium sulfite (Na2SO3), and Na2SO3 oxidation via air purging to produce sodium sulfate (Na2SO4). In this process, the potential energy of SO2 is lost. This paper presents a novel ultraviolet (UV) photolytic process for production of hydrogen from aqueous Na2SO3 solutions. The results show that the quantum efficiency of hydrogen production can reach 14.4% under illumination from a low pressure mercury lamp. The mechanism occurs via two competing reaction pathways that involve oxidation of SO3 2− to SO4 2− directly and through the dithionate (S2O6 2−) ion intermediate. The first route becomes dominant once a photostationary state for S2O6 2− is established. The initial pH of Na2SO3 solution plays an important role in determining both the hydrogen production rate and the final products of the photolytic oxidation. At initial solution pH of 9.80 Na2SO3 photo-oxidation generates Na2SO4 as the final reaction product, while Na2S2O6 is merely a reaction intermediate. The highest hydrogen production rate occurs when the initial solution pH is 7.55. Reduction in the initial solution pH to 5.93 results in disproportionation of HSO3 − to elemental sulfur and SO4 2− but no hydrogen production.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/es903766w</identifier><identifier>PMID: 20515046</identifier><identifier>CODEN: ESTHAG</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Applied sciences ; Aqueous chemistry ; Aqueous solutions ; Energy and the Environment ; Environment ; Environmental Pollutants ; Environmental science ; Exact sciences and technology ; Hydrogen ; Hydrogen - chemistry ; Hydrogen-Ion Concentration ; Kinetics ; Light ; Models, Chemical ; Oxidation ; Oxygen - chemistry ; Photochemistry - methods ; Pollution ; Sodium ; Sulfates - chemistry ; Sulfide compounds ; Sulfites - chemistry ; Ultraviolet Rays ; Water - chemistry ; Water Pollutants, Chemical ; Water Purification - methods</subject><ispartof>Environmental science &amp; technology, 2010-07, Vol.44 (13), p.5283-5288</ispartof><rights>Copyright © 2010 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Chemical Society Jul 1, 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a339t-415b2e3654d10acfb87570a51dd714907642e10f6db989fc263e4f4b38b116ca3</citedby><cites>FETCH-LOGICAL-a339t-415b2e3654d10acfb87570a51dd714907642e10f6db989fc263e4f4b38b116ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/es903766w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/es903766w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22984878$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20515046$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Cunping</creatorcontrib><creatorcontrib>Linkous, Clovis A</creatorcontrib><creatorcontrib>Adebiyi, Olawale</creatorcontrib><creatorcontrib>T-Raissi, Ali</creatorcontrib><title>Hydrogen Production via Photolytic Oxidation of Aqueous Sodium Sulfite Solutions</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>Sulfur dioxide (SO2) emission from coal-burning power plants and refinery operations has been implicated as a cause of acid rain and other air pollution related problems. The conventional treatment of SO2−contaminated air consists of two steps: SO2 absorption using an aqueous sodium hydroxide solution, forming aqueous sodium sulfite (Na2SO3), and Na2SO3 oxidation via air purging to produce sodium sulfate (Na2SO4). In this process, the potential energy of SO2 is lost. This paper presents a novel ultraviolet (UV) photolytic process for production of hydrogen from aqueous Na2SO3 solutions. The results show that the quantum efficiency of hydrogen production can reach 14.4% under illumination from a low pressure mercury lamp. The mechanism occurs via two competing reaction pathways that involve oxidation of SO3 2− to SO4 2− directly and through the dithionate (S2O6 2−) ion intermediate. The first route becomes dominant once a photostationary state for S2O6 2− is established. The initial pH of Na2SO3 solution plays an important role in determining both the hydrogen production rate and the final products of the photolytic oxidation. At initial solution pH of 9.80 Na2SO3 photo-oxidation generates Na2SO4 as the final reaction product, while Na2S2O6 is merely a reaction intermediate. The highest hydrogen production rate occurs when the initial solution pH is 7.55. Reduction in the initial solution pH to 5.93 results in disproportionation of HSO3 − to elemental sulfur and SO4 2− but no hydrogen production.</description><subject>Applied sciences</subject><subject>Aqueous chemistry</subject><subject>Aqueous solutions</subject><subject>Energy and the Environment</subject><subject>Environment</subject><subject>Environmental Pollutants</subject><subject>Environmental science</subject><subject>Exact sciences and technology</subject><subject>Hydrogen</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Kinetics</subject><subject>Light</subject><subject>Models, Chemical</subject><subject>Oxidation</subject><subject>Oxygen - chemistry</subject><subject>Photochemistry - methods</subject><subject>Pollution</subject><subject>Sodium</subject><subject>Sulfates - chemistry</subject><subject>Sulfide compounds</subject><subject>Sulfites - chemistry</subject><subject>Ultraviolet Rays</subject><subject>Water - chemistry</subject><subject>Water Pollutants, Chemical</subject><subject>Water Purification - methods</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpl0E1Lw0AQBuBFFFurB_-ABMGDh-hs9iObYylqhYKFKngLm_3QlDRbdxO1_97U1vbgaRjmYWZ4ETrHcIMhwbcmZEBSzr8OUB-zBGImGD5EfQBM4ozw1x46CWEOAAkBcYx6CTDMgPI-mo5X2rs3U0dT73SrmtLV0Wcpo-m7a1y1akoVPX2XWv4OnI2GH61xbYhmTpftIpq1lS0b07VVuybhFB1ZWQVztq0D9HJ_9zwax5Onh8fRcBJLQrImppgViSGcUY1BKluIlKUgGdY6xTSDlNPEYLBcF5nIrEo4MdTSgogCY64kGaDLzd6ld91LocnnrvV1dzLnkJEUMyo6dL1ByrsQvLH50pcL6Vc5hnwdXb6LrrMX24VtsTB6J_-y6sDVFsigZGW9rFUZ9i7JBBWp2Dupwv6p_wd_ALTWgeM</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Huang, Cunping</creator><creator>Linkous, Clovis A</creator><creator>Adebiyi, Olawale</creator><creator>T-Raissi, Ali</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20100701</creationdate><title>Hydrogen Production via Photolytic Oxidation of Aqueous Sodium Sulfite Solutions</title><author>Huang, Cunping ; Linkous, Clovis A ; Adebiyi, Olawale ; T-Raissi, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a339t-415b2e3654d10acfb87570a51dd714907642e10f6db989fc263e4f4b38b116ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Aqueous chemistry</topic><topic>Aqueous solutions</topic><topic>Energy and the Environment</topic><topic>Environment</topic><topic>Environmental Pollutants</topic><topic>Environmental science</topic><topic>Exact sciences and technology</topic><topic>Hydrogen</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Kinetics</topic><topic>Light</topic><topic>Models, Chemical</topic><topic>Oxidation</topic><topic>Oxygen - chemistry</topic><topic>Photochemistry - methods</topic><topic>Pollution</topic><topic>Sodium</topic><topic>Sulfates - chemistry</topic><topic>Sulfide compounds</topic><topic>Sulfites - chemistry</topic><topic>Ultraviolet Rays</topic><topic>Water - chemistry</topic><topic>Water Pollutants, Chemical</topic><topic>Water Purification - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Cunping</creatorcontrib><creatorcontrib>Linkous, Clovis A</creatorcontrib><creatorcontrib>Adebiyi, Olawale</creatorcontrib><creatorcontrib>T-Raissi, Ali</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Cunping</au><au>Linkous, Clovis A</au><au>Adebiyi, Olawale</au><au>T-Raissi, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen Production via Photolytic Oxidation of Aqueous Sodium Sulfite Solutions</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>44</volume><issue>13</issue><spage>5283</spage><epage>5288</epage><pages>5283-5288</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><coden>ESTHAG</coden><abstract>Sulfur dioxide (SO2) emission from coal-burning power plants and refinery operations has been implicated as a cause of acid rain and other air pollution related problems. The conventional treatment of SO2−contaminated air consists of two steps: SO2 absorption using an aqueous sodium hydroxide solution, forming aqueous sodium sulfite (Na2SO3), and Na2SO3 oxidation via air purging to produce sodium sulfate (Na2SO4). In this process, the potential energy of SO2 is lost. This paper presents a novel ultraviolet (UV) photolytic process for production of hydrogen from aqueous Na2SO3 solutions. The results show that the quantum efficiency of hydrogen production can reach 14.4% under illumination from a low pressure mercury lamp. The mechanism occurs via two competing reaction pathways that involve oxidation of SO3 2− to SO4 2− directly and through the dithionate (S2O6 2−) ion intermediate. The first route becomes dominant once a photostationary state for S2O6 2− is established. The initial pH of Na2SO3 solution plays an important role in determining both the hydrogen production rate and the final products of the photolytic oxidation. At initial solution pH of 9.80 Na2SO3 photo-oxidation generates Na2SO4 as the final reaction product, while Na2S2O6 is merely a reaction intermediate. The highest hydrogen production rate occurs when the initial solution pH is 7.55. Reduction in the initial solution pH to 5.93 results in disproportionation of HSO3 − to elemental sulfur and SO4 2− but no hydrogen production.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>20515046</pmid><doi>10.1021/es903766w</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2010-07, Vol.44 (13), p.5283-5288
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_journals_609371548
source MEDLINE; American Chemical Society Journals
subjects Applied sciences
Aqueous chemistry
Aqueous solutions
Energy and the Environment
Environment
Environmental Pollutants
Environmental science
Exact sciences and technology
Hydrogen
Hydrogen - chemistry
Hydrogen-Ion Concentration
Kinetics
Light
Models, Chemical
Oxidation
Oxygen - chemistry
Photochemistry - methods
Pollution
Sodium
Sulfates - chemistry
Sulfide compounds
Sulfites - chemistry
Ultraviolet Rays
Water - chemistry
Water Pollutants, Chemical
Water Purification - methods
title Hydrogen Production via Photolytic Oxidation of Aqueous Sodium Sulfite Solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T22%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20Production%20via%20Photolytic%20Oxidation%20of%20Aqueous%20Sodium%20Sulfite%20Solutions&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Huang,%20Cunping&rft.date=2010-07-01&rft.volume=44&rft.issue=13&rft.spage=5283&rft.epage=5288&rft.pages=5283-5288&rft.issn=0013-936X&rft.eissn=1520-5851&rft.coden=ESTHAG&rft_id=info:doi/10.1021/es903766w&rft_dat=%3Cproquest_cross%3E2079924801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=609371548&rft_id=info:pmid/20515046&rfr_iscdi=true