Coexistence in Maize: Isolation Distance in Dependence on Conventional Maize Field Depth and Separate Edge Harvest

The most reliable and practicable measure in assuring coexistence in respect to pollen-mediated gene flow from genetically modified (GM) to conventional maize (Zea mays L.) is an isolation distance separating GM and non-GM fields. Therefore, we tested distances between 24 and 102 m at three sites in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crop science 2010-07, Vol.50 (4), p.1496-1508
Hauptverfasser: Langhof, Maren, Hommel, Bernd, Hüsken, Alexandra, Njontie, Charles, Schiemann, Joachim, Wehling, Peter, Wilhelm, Ralf, Rühl, Gerhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1508
container_issue 4
container_start_page 1496
container_title Crop science
container_volume 50
creator Langhof, Maren
Hommel, Bernd
Hüsken, Alexandra
Njontie, Charles
Schiemann, Joachim
Wehling, Peter
Wilhelm, Ralf
Rühl, Gerhard
description The most reliable and practicable measure in assuring coexistence in respect to pollen-mediated gene flow from genetically modified (GM) to conventional maize (Zea mays L.) is an isolation distance separating GM and non-GM fields. Therefore, we tested distances between 24 and 102 m at three sites in northern Germany using a field orientation representing a worst case scenario concerning wind direction. During the 3 yr of field trials the highest levels of gene flow occurred at the site and year with the longest flowering synchrony and the strongest wind blowing constantly from the GM to the non-GM field. It was shown that the GM content of a neighboring non-GM maize field is mainly determined by wind speed and direction as well as by non-GM maize field depth. Based on the maximum outcrossing data obtained it can be concluded that for non-GM maize fields being 200 m deep or more an isolation distance of 50 m is sufficient to keep the GM content of the total fields grain harvest below the European Union (EU) labeling threshold of 0.9%. However, non-GM grain maize fields with smaller field depth require larger isolation distances or additional coexistence measures. In most cases discarding 6 m of the GM maize facing non-GM maize field edge has proven to be such a valuable measure. In silage maize production 50 m isolation distance is adequate even for non-GM maize field depths down to 50 m. We recommend flexible separation distances in dependence on non-GM maize field depth to comply with EU coexistence requirements.
doi_str_mv 10.2135/cropsci2009.11.0641
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_521205122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2067171671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4381-bd2a304ae873d99bb414ee81d2e1dbb5ef01799d4510b1522fc68dbe9d9385cf3</originalsourceid><addsrcrecordid>eNqNkE9v1DAUxC0EEkvhE3DAQuKY5T3_2cTcUNqlKxW1YlupN8uJX0qqkAQ7bWk_PQ5ZIY6cLHl-M_M0jL1FWAuU-mMdhjHWrQAwa8Q1bBQ-YytUUmew0fI5WwEgZljI65fsVYy3AJCbXK9YKAf61caJ-pp42_Ovrn2iT3wXh85N7dDz4yS6g3hMI_X-D5qUcujvqZ8h1y0-vm2p8zM2feeu93xPowtuIn7ib4ifunBPcXrNXjSui_Tm8B6xq-3JZXmanZ1_2ZWfz7JayQKzygsnQTkqcumNqSqFiqhALwh9VWlqAHNjvNIIFWohmnpT-IqMN7LQdSOP2PsldwzDz7tUbG-Hu5COjVYLFKBRiATJBUoTxhiosWNof7jwaBHsvK39Z1uLaOdtk-vDIdrF2nVNSAu18a9VCKMQDSRuu3APbUeP_xNty30pym_nF_tyN_8jHgrfLUGNG6y7Cansai8AJWChtVK5_A1W3ppN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>521205122</pqid></control><display><type>article</type><title>Coexistence in Maize: Isolation Distance in Dependence on Conventional Maize Field Depth and Separate Edge Harvest</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Langhof, Maren ; Hommel, Bernd ; Hüsken, Alexandra ; Njontie, Charles ; Schiemann, Joachim ; Wehling, Peter ; Wilhelm, Ralf ; Rühl, Gerhard</creator><creatorcontrib>Langhof, Maren ; Hommel, Bernd ; Hüsken, Alexandra ; Njontie, Charles ; Schiemann, Joachim ; Wehling, Peter ; Wilhelm, Ralf ; Rühl, Gerhard</creatorcontrib><description>The most reliable and practicable measure in assuring coexistence in respect to pollen-mediated gene flow from genetically modified (GM) to conventional maize (Zea mays L.) is an isolation distance separating GM and non-GM fields. Therefore, we tested distances between 24 and 102 m at three sites in northern Germany using a field orientation representing a worst case scenario concerning wind direction. During the 3 yr of field trials the highest levels of gene flow occurred at the site and year with the longest flowering synchrony and the strongest wind blowing constantly from the GM to the non-GM field. It was shown that the GM content of a neighboring non-GM maize field is mainly determined by wind speed and direction as well as by non-GM maize field depth. Based on the maximum outcrossing data obtained it can be concluded that for non-GM maize fields being 200 m deep or more an isolation distance of 50 m is sufficient to keep the GM content of the total fields grain harvest below the European Union (EU) labeling threshold of 0.9%. However, non-GM grain maize fields with smaller field depth require larger isolation distances or additional coexistence measures. In most cases discarding 6 m of the GM maize facing non-GM maize field edge has proven to be such a valuable measure. In silage maize production 50 m isolation distance is adequate even for non-GM maize field depths down to 50 m. We recommend flexible separation distances in dependence on non-GM maize field depth to comply with EU coexistence requirements.</description><identifier>ISSN: 0011-183X</identifier><identifier>EISSN: 1435-0653</identifier><identifier>DOI: 10.2135/cropsci2009.11.0641</identifier><identifier>CODEN: CRPSAY</identifier><language>eng</language><publisher>Madison: Crop Science Society of America</publisher><subject>agricultural law ; Agronomy. Soil science and plant productions ; Biological and medical sciences ; Corn ; corn silage ; crop coexistence ; Crop production ; European Union ; field experimentation ; flowering ; Fundamental and applied biological sciences. Psychology ; Gene flow ; Genetically altered foods ; grain crops ; Harvesting ; Labeling ; outcrossing ; phenology ; Pollen ; pollen flow ; spatial distribution ; transgenes ; transgenic plants ; wind direction ; Wind speed ; Zea mays</subject><ispartof>Crop science, 2010-07, Vol.50 (4), p.1496-1508</ispartof><rights>Crop Science Society of America</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Society of Agronomy Jul/Aug 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4381-bd2a304ae873d99bb414ee81d2e1dbb5ef01799d4510b1522fc68dbe9d9385cf3</citedby><cites>FETCH-LOGICAL-c4381-bd2a304ae873d99bb414ee81d2e1dbb5ef01799d4510b1522fc68dbe9d9385cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2135%2Fcropsci2009.11.0641$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2135%2Fcropsci2009.11.0641$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22941190$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Langhof, Maren</creatorcontrib><creatorcontrib>Hommel, Bernd</creatorcontrib><creatorcontrib>Hüsken, Alexandra</creatorcontrib><creatorcontrib>Njontie, Charles</creatorcontrib><creatorcontrib>Schiemann, Joachim</creatorcontrib><creatorcontrib>Wehling, Peter</creatorcontrib><creatorcontrib>Wilhelm, Ralf</creatorcontrib><creatorcontrib>Rühl, Gerhard</creatorcontrib><title>Coexistence in Maize: Isolation Distance in Dependence on Conventional Maize Field Depth and Separate Edge Harvest</title><title>Crop science</title><description>The most reliable and practicable measure in assuring coexistence in respect to pollen-mediated gene flow from genetically modified (GM) to conventional maize (Zea mays L.) is an isolation distance separating GM and non-GM fields. Therefore, we tested distances between 24 and 102 m at three sites in northern Germany using a field orientation representing a worst case scenario concerning wind direction. During the 3 yr of field trials the highest levels of gene flow occurred at the site and year with the longest flowering synchrony and the strongest wind blowing constantly from the GM to the non-GM field. It was shown that the GM content of a neighboring non-GM maize field is mainly determined by wind speed and direction as well as by non-GM maize field depth. Based on the maximum outcrossing data obtained it can be concluded that for non-GM maize fields being 200 m deep or more an isolation distance of 50 m is sufficient to keep the GM content of the total fields grain harvest below the European Union (EU) labeling threshold of 0.9%. However, non-GM grain maize fields with smaller field depth require larger isolation distances or additional coexistence measures. In most cases discarding 6 m of the GM maize facing non-GM maize field edge has proven to be such a valuable measure. In silage maize production 50 m isolation distance is adequate even for non-GM maize field depths down to 50 m. We recommend flexible separation distances in dependence on non-GM maize field depth to comply with EU coexistence requirements.</description><subject>agricultural law</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Biological and medical sciences</subject><subject>Corn</subject><subject>corn silage</subject><subject>crop coexistence</subject><subject>Crop production</subject><subject>European Union</subject><subject>field experimentation</subject><subject>flowering</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene flow</subject><subject>Genetically altered foods</subject><subject>grain crops</subject><subject>Harvesting</subject><subject>Labeling</subject><subject>outcrossing</subject><subject>phenology</subject><subject>Pollen</subject><subject>pollen flow</subject><subject>spatial distribution</subject><subject>transgenes</subject><subject>transgenic plants</subject><subject>wind direction</subject><subject>Wind speed</subject><subject>Zea mays</subject><issn>0011-183X</issn><issn>1435-0653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkE9v1DAUxC0EEkvhE3DAQuKY5T3_2cTcUNqlKxW1YlupN8uJX0qqkAQ7bWk_PQ5ZIY6cLHl-M_M0jL1FWAuU-mMdhjHWrQAwa8Q1bBQ-YytUUmew0fI5WwEgZljI65fsVYy3AJCbXK9YKAf61caJ-pp42_Ovrn2iT3wXh85N7dDz4yS6g3hMI_X-D5qUcujvqZ8h1y0-vm2p8zM2feeu93xPowtuIn7ib4ifunBPcXrNXjSui_Tm8B6xq-3JZXmanZ1_2ZWfz7JayQKzygsnQTkqcumNqSqFiqhALwh9VWlqAHNjvNIIFWohmnpT-IqMN7LQdSOP2PsldwzDz7tUbG-Hu5COjVYLFKBRiATJBUoTxhiosWNof7jwaBHsvK39Z1uLaOdtk-vDIdrF2nVNSAu18a9VCKMQDSRuu3APbUeP_xNty30pym_nF_tyN_8jHgrfLUGNG6y7Cansai8AJWChtVK5_A1W3ppN</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Langhof, Maren</creator><creator>Hommel, Bernd</creator><creator>Hüsken, Alexandra</creator><creator>Njontie, Charles</creator><creator>Schiemann, Joachim</creator><creator>Wehling, Peter</creator><creator>Wilhelm, Ralf</creator><creator>Rühl, Gerhard</creator><general>Crop Science Society of America</general><general>American Society of Agronomy</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>201007</creationdate><title>Coexistence in Maize: Isolation Distance in Dependence on Conventional Maize Field Depth and Separate Edge Harvest</title><author>Langhof, Maren ; Hommel, Bernd ; Hüsken, Alexandra ; Njontie, Charles ; Schiemann, Joachim ; Wehling, Peter ; Wilhelm, Ralf ; Rühl, Gerhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4381-bd2a304ae873d99bb414ee81d2e1dbb5ef01799d4510b1522fc68dbe9d9385cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>agricultural law</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Biological and medical sciences</topic><topic>Corn</topic><topic>corn silage</topic><topic>crop coexistence</topic><topic>Crop production</topic><topic>European Union</topic><topic>field experimentation</topic><topic>flowering</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene flow</topic><topic>Genetically altered foods</topic><topic>grain crops</topic><topic>Harvesting</topic><topic>Labeling</topic><topic>outcrossing</topic><topic>phenology</topic><topic>Pollen</topic><topic>pollen flow</topic><topic>spatial distribution</topic><topic>transgenes</topic><topic>transgenic plants</topic><topic>wind direction</topic><topic>Wind speed</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langhof, Maren</creatorcontrib><creatorcontrib>Hommel, Bernd</creatorcontrib><creatorcontrib>Hüsken, Alexandra</creatorcontrib><creatorcontrib>Njontie, Charles</creatorcontrib><creatorcontrib>Schiemann, Joachim</creatorcontrib><creatorcontrib>Wehling, Peter</creatorcontrib><creatorcontrib>Wilhelm, Ralf</creatorcontrib><creatorcontrib>Rühl, Gerhard</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Crop science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langhof, Maren</au><au>Hommel, Bernd</au><au>Hüsken, Alexandra</au><au>Njontie, Charles</au><au>Schiemann, Joachim</au><au>Wehling, Peter</au><au>Wilhelm, Ralf</au><au>Rühl, Gerhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coexistence in Maize: Isolation Distance in Dependence on Conventional Maize Field Depth and Separate Edge Harvest</atitle><jtitle>Crop science</jtitle><date>2010-07</date><risdate>2010</risdate><volume>50</volume><issue>4</issue><spage>1496</spage><epage>1508</epage><pages>1496-1508</pages><issn>0011-183X</issn><eissn>1435-0653</eissn><coden>CRPSAY</coden><abstract>The most reliable and practicable measure in assuring coexistence in respect to pollen-mediated gene flow from genetically modified (GM) to conventional maize (Zea mays L.) is an isolation distance separating GM and non-GM fields. Therefore, we tested distances between 24 and 102 m at three sites in northern Germany using a field orientation representing a worst case scenario concerning wind direction. During the 3 yr of field trials the highest levels of gene flow occurred at the site and year with the longest flowering synchrony and the strongest wind blowing constantly from the GM to the non-GM field. It was shown that the GM content of a neighboring non-GM maize field is mainly determined by wind speed and direction as well as by non-GM maize field depth. Based on the maximum outcrossing data obtained it can be concluded that for non-GM maize fields being 200 m deep or more an isolation distance of 50 m is sufficient to keep the GM content of the total fields grain harvest below the European Union (EU) labeling threshold of 0.9%. However, non-GM grain maize fields with smaller field depth require larger isolation distances or additional coexistence measures. In most cases discarding 6 m of the GM maize facing non-GM maize field edge has proven to be such a valuable measure. In silage maize production 50 m isolation distance is adequate even for non-GM maize field depths down to 50 m. We recommend flexible separation distances in dependence on non-GM maize field depth to comply with EU coexistence requirements.</abstract><cop>Madison</cop><pub>Crop Science Society of America</pub><doi>10.2135/cropsci2009.11.0641</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0011-183X
ispartof Crop science, 2010-07, Vol.50 (4), p.1496-1508
issn 0011-183X
1435-0653
language eng
recordid cdi_proquest_journals_521205122
source Access via Wiley Online Library; Alma/SFX Local Collection
subjects agricultural law
Agronomy. Soil science and plant productions
Biological and medical sciences
Corn
corn silage
crop coexistence
Crop production
European Union
field experimentation
flowering
Fundamental and applied biological sciences. Psychology
Gene flow
Genetically altered foods
grain crops
Harvesting
Labeling
outcrossing
phenology
Pollen
pollen flow
spatial distribution
transgenes
transgenic plants
wind direction
Wind speed
Zea mays
title Coexistence in Maize: Isolation Distance in Dependence on Conventional Maize Field Depth and Separate Edge Harvest
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A23%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coexistence%20in%20Maize:%20Isolation%20Distance%20in%20Dependence%20on%20Conventional%20Maize%20Field%20Depth%20and%20Separate%20Edge%20Harvest&rft.jtitle=Crop%20science&rft.au=Langhof,%20Maren&rft.date=2010-07&rft.volume=50&rft.issue=4&rft.spage=1496&rft.epage=1508&rft.pages=1496-1508&rft.issn=0011-183X&rft.eissn=1435-0653&rft.coden=CRPSAY&rft_id=info:doi/10.2135/cropsci2009.11.0641&rft_dat=%3Cproquest_cross%3E2067171671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=521205122&rft_id=info:pmid/&rfr_iscdi=true