The Prediction of Non-stationary Climate Series Based on Empirical Mode Decomposition
This paper proposes a new approach which we refer to as "segregated prediction" to predict climate time series which are nonstationary. This approach is based on the empirical mode decomposition method (EMD), which can decompose a time signal into a finite and usually small number of basic oscillato...
Gespeichert in:
Veröffentlicht in: | Advances in atmospheric sciences 2010-07, Vol.27 (4), p.845-854 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 854 |
---|---|
container_issue | 4 |
container_start_page | 845 |
container_title | Advances in atmospheric sciences |
container_volume | 27 |
creator | 杨培才 王革丽 卞建春 周秀骥 |
description | This paper proposes a new approach which we refer to as "segregated prediction" to predict climate time series which are nonstationary. This approach is based on the empirical mode decomposition method (EMD), which can decompose a time signal into a finite and usually small number of basic oscillatory components. To test the capabilities of this approach, some prediction experiments are carried out for several climate time series. The experimental results show that this approach can decompose the nonstationarity of the climate time series and segregate nonlinear interactions between the different mode components, which thereby is able to improve prediction accuracy of these original climate time series. |
doi_str_mv | 10.1007/s00376-009-9128-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_504301981</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>34348235</cqvip_id><sourcerecordid>2062210801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-224da3ea1e58cd68ff38c37572375a39bbef9e01f5de5c40af4c405ffa4350bf3</originalsourceid><addsrcrecordid>eNp9kE1PAjEQhhujiYj-AG-N92rb2cLuURE_Er8S4dyU7hQWYQvtksC_t5sl8eZlmkmeZ2b6EnIt-K3gfHgXOYfhgHFesELInO1PSE_kA8EKBXBKelyqARMK-Dm5iHGZ6AJy0SPTyQLpV8Cysk3la-od_fA1i41pWxMOdLSq1qZB-o2hwkgfTMSSJnK83lShsmZF332J9BGtX298rFrvkpw5s4p4dXz7ZPo0noxe2Nvn8-vo_o1ZyGTDpMxKA2gEqtyWg9w5yC0M1VCmYqCYzdAVyIVTJSqbceOyVJVzJgPFZw765Kabuwl-u8PY6KXfhTqt1IpnwEWRiwSJDrLBxxjQ6U1IXwoHLbhuw9NdeDqFp9vw9D45snNiYus5hr_B_0nHa-zC1_Nt8vTM2B9XrVBDBlkuQcEv3rF-RQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>504301981</pqid></control><display><type>article</type><title>The Prediction of Non-stationary Climate Series Based on Empirical Mode Decomposition</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>杨培才 王革丽 卞建春 周秀骥</creator><creatorcontrib>杨培才 王革丽 卞建春 周秀骥</creatorcontrib><description>This paper proposes a new approach which we refer to as "segregated prediction" to predict climate time series which are nonstationary. This approach is based on the empirical mode decomposition method (EMD), which can decompose a time signal into a finite and usually small number of basic oscillatory components. To test the capabilities of this approach, some prediction experiments are carried out for several climate time series. The experimental results show that this approach can decompose the nonstationarity of the climate time series and segregate nonlinear interactions between the different mode components, which thereby is able to improve prediction accuracy of these original climate time series.</description><identifier>ISSN: 0256-1530</identifier><identifier>EISSN: 1861-9533</identifier><identifier>DOI: 10.1007/s00376-009-9128-x</identifier><language>eng</language><publisher>Heidelberg: SP Science Press</publisher><subject>Accuracy ; Atmospheric Sciences ; Decomposition ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Meteorology ; Nonlinear systems ; Research methodology ; Time series ; Weather forecasting ; 序列预测 ; 模式分解法 ; 气候预测 ; 经验模式分解 ; 隔离元件 ; 非平稳性 ; 非平稳时间序列 ; 非线性相互作用</subject><ispartof>Advances in atmospheric sciences, 2010-07, Vol.27 (4), p.845-854</ispartof><rights>Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-224da3ea1e58cd68ff38c37572375a39bbef9e01f5de5c40af4c405ffa4350bf3</citedby><cites>FETCH-LOGICAL-c342t-224da3ea1e58cd68ff38c37572375a39bbef9e01f5de5c40af4c405ffa4350bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/84334X/84334X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00376-009-9128-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00376-009-9128-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>杨培才 王革丽 卞建春 周秀骥</creatorcontrib><title>The Prediction of Non-stationary Climate Series Based on Empirical Mode Decomposition</title><title>Advances in atmospheric sciences</title><addtitle>Adv. Atmos. Sci</addtitle><addtitle>Advances in Atmospheric Sciences</addtitle><description>This paper proposes a new approach which we refer to as "segregated prediction" to predict climate time series which are nonstationary. This approach is based on the empirical mode decomposition method (EMD), which can decompose a time signal into a finite and usually small number of basic oscillatory components. To test the capabilities of this approach, some prediction experiments are carried out for several climate time series. The experimental results show that this approach can decompose the nonstationarity of the climate time series and segregate nonlinear interactions between the different mode components, which thereby is able to improve prediction accuracy of these original climate time series.</description><subject>Accuracy</subject><subject>Atmospheric Sciences</subject><subject>Decomposition</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Meteorology</subject><subject>Nonlinear systems</subject><subject>Research methodology</subject><subject>Time series</subject><subject>Weather forecasting</subject><subject>序列预测</subject><subject>模式分解法</subject><subject>气候预测</subject><subject>经验模式分解</subject><subject>隔离元件</subject><subject>非平稳性</subject><subject>非平稳时间序列</subject><subject>非线性相互作用</subject><issn>0256-1530</issn><issn>1861-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1PAjEQhhujiYj-AG-N92rb2cLuURE_Er8S4dyU7hQWYQvtksC_t5sl8eZlmkmeZ2b6EnIt-K3gfHgXOYfhgHFesELInO1PSE_kA8EKBXBKelyqARMK-Dm5iHGZ6AJy0SPTyQLpV8Cysk3la-od_fA1i41pWxMOdLSq1qZB-o2hwkgfTMSSJnK83lShsmZF332J9BGtX298rFrvkpw5s4p4dXz7ZPo0noxe2Nvn8-vo_o1ZyGTDpMxKA2gEqtyWg9w5yC0M1VCmYqCYzdAVyIVTJSqbceOyVJVzJgPFZw765Kabuwl-u8PY6KXfhTqt1IpnwEWRiwSJDrLBxxjQ6U1IXwoHLbhuw9NdeDqFp9vw9D45snNiYus5hr_B_0nHa-zC1_Nt8vTM2B9XrVBDBlkuQcEv3rF-RQ</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>杨培才 王革丽 卞建春 周秀骥</creator><general>SP Science Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20100701</creationdate><title>The Prediction of Non-stationary Climate Series Based on Empirical Mode Decomposition</title><author>杨培才 王革丽 卞建春 周秀骥</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-224da3ea1e58cd68ff38c37572375a39bbef9e01f5de5c40af4c405ffa4350bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>Atmospheric Sciences</topic><topic>Decomposition</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Meteorology</topic><topic>Nonlinear systems</topic><topic>Research methodology</topic><topic>Time series</topic><topic>Weather forecasting</topic><topic>序列预测</topic><topic>模式分解法</topic><topic>气候预测</topic><topic>经验模式分解</topic><topic>隔离元件</topic><topic>非平稳性</topic><topic>非平稳时间序列</topic><topic>非线性相互作用</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>杨培才 王革丽 卞建春 周秀骥</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database (ProQuest)</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Advances in atmospheric sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>杨培才 王革丽 卞建春 周秀骥</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Prediction of Non-stationary Climate Series Based on Empirical Mode Decomposition</atitle><jtitle>Advances in atmospheric sciences</jtitle><stitle>Adv. Atmos. Sci</stitle><addtitle>Advances in Atmospheric Sciences</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>27</volume><issue>4</issue><spage>845</spage><epage>854</epage><pages>845-854</pages><issn>0256-1530</issn><eissn>1861-9533</eissn><abstract>This paper proposes a new approach which we refer to as "segregated prediction" to predict climate time series which are nonstationary. This approach is based on the empirical mode decomposition method (EMD), which can decompose a time signal into a finite and usually small number of basic oscillatory components. To test the capabilities of this approach, some prediction experiments are carried out for several climate time series. The experimental results show that this approach can decompose the nonstationarity of the climate time series and segregate nonlinear interactions between the different mode components, which thereby is able to improve prediction accuracy of these original climate time series.</abstract><cop>Heidelberg</cop><pub>SP Science Press</pub><doi>10.1007/s00376-009-9128-x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-1530 |
ispartof | Advances in atmospheric sciences, 2010-07, Vol.27 (4), p.845-854 |
issn | 0256-1530 1861-9533 |
language | eng |
recordid | cdi_proquest_journals_504301981 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Accuracy Atmospheric Sciences Decomposition Earth and Environmental Science Earth Sciences Geophysics/Geodesy Meteorology Nonlinear systems Research methodology Time series Weather forecasting 序列预测 模式分解法 气候预测 经验模式分解 隔离元件 非平稳性 非平稳时间序列 非线性相互作用 |
title | The Prediction of Non-stationary Climate Series Based on Empirical Mode Decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A32%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Prediction%20of%20Non-stationary%20Climate%20Series%20Based%20on%20Empirical%20Mode%20Decomposition&rft.jtitle=Advances%20in%20atmospheric%20sciences&rft.au=%E6%9D%A8%E5%9F%B9%E6%89%8D%20%E7%8E%8B%E9%9D%A9%E4%B8%BD%20%E5%8D%9E%E5%BB%BA%E6%98%A5%20%E5%91%A8%E7%A7%80%E9%AA%A5&rft.date=2010-07-01&rft.volume=27&rft.issue=4&rft.spage=845&rft.epage=854&rft.pages=845-854&rft.issn=0256-1530&rft.eissn=1861-9533&rft_id=info:doi/10.1007/s00376-009-9128-x&rft_dat=%3Cproquest_cross%3E2062210801%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=504301981&rft_id=info:pmid/&rft_cqvip_id=34348235&rfr_iscdi=true |