Study on the Morphology Evolution and Purification of Electrorefined Silicon
A three-layer process and apparatus have been developed for electrorefining of silicon for solar cell application. The anode is solidified from a hypereutectic solution of copper and MG silicon. At the temperature of operation (1223 K (950 °C)), elements that have an electronegativity greater than t...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2010-04, Vol.41 (4), p.929-935 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 935 |
---|---|
container_issue | 4 |
container_start_page | 929 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 41 |
creator | Lai, Yan-Qing Jia, Ming Tian, Zhong-Liang Li, Jie Yan, Jian-Feng Yi, Ji-Guang Wang, Zhi-Gang Liu, Ye-Xiang |
description | A three-layer process and apparatus have been developed for electrorefining of silicon for solar cell application. The anode is solidified from a hypereutectic solution of copper and MG silicon. At the temperature of operation (1223 K (950 °C)), elements that have an electronegativity greater than that of silicon will remain at the anode (
e.g.
, Cu, B, P,
etc.
) and then the Cu-Si phase can be used under certain conditions as a filter for purifying silicon with an electrorefining process. According to the stable liquid electrode reactive surface, high current density is possible during electrorefining and such advantages obviously improve the rate of deposition, which is a key point to reach commercial development. Deposited silicon particles are found embedded in electrolyte. Furthermore, with increasing operation time and current density, recombination of silicon particles is revealed and yields silicon balls with a diameter of 2 cm. The analysis of the anode feed and refined silicon shows a remarkable reduction of B and P concentrations, from 12.7 to 2.4 ppmw and 98.6 to 4.3 ppmw, respectively. Besides, particular mention should be made of efficient removal of impurities such as Fe, Mn, and Ti, which are present in significant quantities in the anode feed. |
doi_str_mv | 10.1007/s11661-009-0154-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_499623368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2059328311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-a361c2807c5737f2d4b705058ea385350e18845954fd35a6691adde22193e3a23</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcIuQOBp27dhJjqgqD6kIpMLZMo7TugpxsROk_j0uQXDitKud2dnZIeQc4QoBiuuIKCVSgIoCipziAZmkyilWORymHgpOhWT8mJzEuAEArLickMWyH-pd5rusX9vs0Yft2rd-tcvmn74depcA3dXZ8xBc44z-Hvgmm7fW9MEH27jO1tnStc747pQcNbqN9uynTsnr7fxldk8XT3cPs5sFNblgPdVcomElFEYUvGhYnb8VIECUVvNScAEWyzIXlcibmgstZYW6ri1jybLlmvEpuRh1t8F_DDb2auOH0KWTKq-q9CSXZSLhSDLBx5icqm1w7zrsFILaZ6bGzFTKTO0zU5h2Ln-EdTS6bYLujIu_i4yJZJ3ttdnIiwnqVjb8Gfhf_AsTYXpW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>499623368</pqid></control><display><type>article</type><title>Study on the Morphology Evolution and Purification of Electrorefined Silicon</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lai, Yan-Qing ; Jia, Ming ; Tian, Zhong-Liang ; Li, Jie ; Yan, Jian-Feng ; Yi, Ji-Guang ; Wang, Zhi-Gang ; Liu, Ye-Xiang</creator><creatorcontrib>Lai, Yan-Qing ; Jia, Ming ; Tian, Zhong-Liang ; Li, Jie ; Yan, Jian-Feng ; Yi, Ji-Guang ; Wang, Zhi-Gang ; Liu, Ye-Xiang</creatorcontrib><description>A three-layer process and apparatus have been developed for electrorefining of silicon for solar cell application. The anode is solidified from a hypereutectic solution of copper and MG silicon. At the temperature of operation (1223 K (950 °C)), elements that have an electronegativity greater than that of silicon will remain at the anode (
e.g.
, Cu, B, P,
etc.
) and then the Cu-Si phase can be used under certain conditions as a filter for purifying silicon with an electrorefining process. According to the stable liquid electrode reactive surface, high current density is possible during electrorefining and such advantages obviously improve the rate of deposition, which is a key point to reach commercial development. Deposited silicon particles are found embedded in electrolyte. Furthermore, with increasing operation time and current density, recombination of silicon particles is revealed and yields silicon balls with a diameter of 2 cm. The analysis of the anode feed and refined silicon shows a remarkable reduction of B and P concentrations, from 12.7 to 2.4 ppmw and 98.6 to 4.3 ppmw, respectively. Besides, particular mention should be made of efficient removal of impurities such as Fe, Mn, and Ti, which are present in significant quantities in the anode feed.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-009-0154-1</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alumina ; Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Exact sciences and technology ; Grain size ; Materials Science ; Metallic Materials ; Metals. Metallurgy ; Nanotechnology ; Photovoltaic cells ; Principles ; Silicon ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2010-04, Vol.41 (4), p.929-935</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Minerals, Metals & Materials Society Apr 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-a361c2807c5737f2d4b705058ea385350e18845954fd35a6691adde22193e3a23</citedby><cites>FETCH-LOGICAL-c452t-a361c2807c5737f2d4b705058ea385350e18845954fd35a6691adde22193e3a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-009-0154-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-009-0154-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22536128$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lai, Yan-Qing</creatorcontrib><creatorcontrib>Jia, Ming</creatorcontrib><creatorcontrib>Tian, Zhong-Liang</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Yan, Jian-Feng</creatorcontrib><creatorcontrib>Yi, Ji-Guang</creatorcontrib><creatorcontrib>Wang, Zhi-Gang</creatorcontrib><creatorcontrib>Liu, Ye-Xiang</creatorcontrib><title>Study on the Morphology Evolution and Purification of Electrorefined Silicon</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>A three-layer process and apparatus have been developed for electrorefining of silicon for solar cell application. The anode is solidified from a hypereutectic solution of copper and MG silicon. At the temperature of operation (1223 K (950 °C)), elements that have an electronegativity greater than that of silicon will remain at the anode (
e.g.
, Cu, B, P,
etc.
) and then the Cu-Si phase can be used under certain conditions as a filter for purifying silicon with an electrorefining process. According to the stable liquid electrode reactive surface, high current density is possible during electrorefining and such advantages obviously improve the rate of deposition, which is a key point to reach commercial development. Deposited silicon particles are found embedded in electrolyte. Furthermore, with increasing operation time and current density, recombination of silicon particles is revealed and yields silicon balls with a diameter of 2 cm. The analysis of the anode feed and refined silicon shows a remarkable reduction of B and P concentrations, from 12.7 to 2.4 ppmw and 98.6 to 4.3 ppmw, respectively. Besides, particular mention should be made of efficient removal of impurities such as Fe, Mn, and Ti, which are present in significant quantities in the anode feed.</description><subject>Alumina</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Exact sciences and technology</subject><subject>Grain size</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Photovoltaic cells</subject><subject>Principles</subject><subject>Silicon</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UMtOwzAQtBBIlMIHcIuQOBp27dhJjqgqD6kIpMLZMo7TugpxsROk_j0uQXDitKud2dnZIeQc4QoBiuuIKCVSgIoCipziAZmkyilWORymHgpOhWT8mJzEuAEArLickMWyH-pd5rusX9vs0Yft2rd-tcvmn74depcA3dXZ8xBc44z-Hvgmm7fW9MEH27jO1tnStc747pQcNbqN9uynTsnr7fxldk8XT3cPs5sFNblgPdVcomElFEYUvGhYnb8VIECUVvNScAEWyzIXlcibmgstZYW6ri1jybLlmvEpuRh1t8F_DDb2auOH0KWTKq-q9CSXZSLhSDLBx5icqm1w7zrsFILaZ6bGzFTKTO0zU5h2Ln-EdTS6bYLujIu_i4yJZJ3ttdnIiwnqVjb8Gfhf_AsTYXpW</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Lai, Yan-Qing</creator><creator>Jia, Ming</creator><creator>Tian, Zhong-Liang</creator><creator>Li, Jie</creator><creator>Yan, Jian-Feng</creator><creator>Yi, Ji-Guang</creator><creator>Wang, Zhi-Gang</creator><creator>Liu, Ye-Xiang</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20100401</creationdate><title>Study on the Morphology Evolution and Purification of Electrorefined Silicon</title><author>Lai, Yan-Qing ; Jia, Ming ; Tian, Zhong-Liang ; Li, Jie ; Yan, Jian-Feng ; Yi, Ji-Guang ; Wang, Zhi-Gang ; Liu, Ye-Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-a361c2807c5737f2d4b705058ea385350e18845954fd35a6691adde22193e3a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alumina</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Exact sciences and technology</topic><topic>Grain size</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Photovoltaic cells</topic><topic>Principles</topic><topic>Silicon</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Yan-Qing</creatorcontrib><creatorcontrib>Jia, Ming</creatorcontrib><creatorcontrib>Tian, Zhong-Liang</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Yan, Jian-Feng</creatorcontrib><creatorcontrib>Yi, Ji-Guang</creatorcontrib><creatorcontrib>Wang, Zhi-Gang</creatorcontrib><creatorcontrib>Liu, Ye-Xiang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Yan-Qing</au><au>Jia, Ming</au><au>Tian, Zhong-Liang</au><au>Li, Jie</au><au>Yan, Jian-Feng</au><au>Yi, Ji-Guang</au><au>Wang, Zhi-Gang</au><au>Liu, Ye-Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the Morphology Evolution and Purification of Electrorefined Silicon</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>41</volume><issue>4</issue><spage>929</spage><epage>935</epage><pages>929-935</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>A three-layer process and apparatus have been developed for electrorefining of silicon for solar cell application. The anode is solidified from a hypereutectic solution of copper and MG silicon. At the temperature of operation (1223 K (950 °C)), elements that have an electronegativity greater than that of silicon will remain at the anode (
e.g.
, Cu, B, P,
etc.
) and then the Cu-Si phase can be used under certain conditions as a filter for purifying silicon with an electrorefining process. According to the stable liquid electrode reactive surface, high current density is possible during electrorefining and such advantages obviously improve the rate of deposition, which is a key point to reach commercial development. Deposited silicon particles are found embedded in electrolyte. Furthermore, with increasing operation time and current density, recombination of silicon particles is revealed and yields silicon balls with a diameter of 2 cm. The analysis of the anode feed and refined silicon shows a remarkable reduction of B and P concentrations, from 12.7 to 2.4 ppmw and 98.6 to 4.3 ppmw, respectively. Besides, particular mention should be made of efficient removal of impurities such as Fe, Mn, and Ti, which are present in significant quantities in the anode feed.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-009-0154-1</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2010-04, Vol.41 (4), p.929-935 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_499623368 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alumina Applied sciences Characterization and Evaluation of Materials Chemistry and Materials Science Exact sciences and technology Grain size Materials Science Metallic Materials Metals. Metallurgy Nanotechnology Photovoltaic cells Principles Silicon Structural Materials Surfaces and Interfaces Thin Films |
title | Study on the Morphology Evolution and Purification of Electrorefined Silicon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20Morphology%20Evolution%20and%20Purification%20of%20Electrorefined%20Silicon&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Lai,%20Yan-Qing&rft.date=2010-04-01&rft.volume=41&rft.issue=4&rft.spage=929&rft.epage=935&rft.pages=929-935&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-009-0154-1&rft_dat=%3Cproquest_cross%3E2059328311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=499623368&rft_id=info:pmid/&rfr_iscdi=true |