Study on the Morphology Evolution and Purification of Electrorefined Silicon

A three-layer process and apparatus have been developed for electrorefining of silicon for solar cell application. The anode is solidified from a hypereutectic solution of copper and MG silicon. At the temperature of operation (1223 K (950 °C)), elements that have an electronegativity greater than t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2010-04, Vol.41 (4), p.929-935
Hauptverfasser: Lai, Yan-Qing, Jia, Ming, Tian, Zhong-Liang, Li, Jie, Yan, Jian-Feng, Yi, Ji-Guang, Wang, Zhi-Gang, Liu, Ye-Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 935
container_issue 4
container_start_page 929
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 41
creator Lai, Yan-Qing
Jia, Ming
Tian, Zhong-Liang
Li, Jie
Yan, Jian-Feng
Yi, Ji-Guang
Wang, Zhi-Gang
Liu, Ye-Xiang
description A three-layer process and apparatus have been developed for electrorefining of silicon for solar cell application. The anode is solidified from a hypereutectic solution of copper and MG silicon. At the temperature of operation (1223 K (950 °C)), elements that have an electronegativity greater than that of silicon will remain at the anode ( e.g. , Cu, B, P, etc. ) and then the Cu-Si phase can be used under certain conditions as a filter for purifying silicon with an electrorefining process. According to the stable liquid electrode reactive surface, high current density is possible during electrorefining and such advantages obviously improve the rate of deposition, which is a key point to reach commercial development. Deposited silicon particles are found embedded in electrolyte. Furthermore, with increasing operation time and current density, recombination of silicon particles is revealed and yields silicon balls with a diameter of 2 cm. The analysis of the anode feed and refined silicon shows a remarkable reduction of B and P concentrations, from 12.7 to 2.4 ppmw and 98.6 to 4.3 ppmw, respectively. Besides, particular mention should be made of efficient removal of impurities such as Fe, Mn, and Ti, which are present in significant quantities in the anode feed.
doi_str_mv 10.1007/s11661-009-0154-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_499623368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2059328311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-a361c2807c5737f2d4b705058ea385350e18845954fd35a6691adde22193e3a23</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcIuQOBp27dhJjqgqD6kIpMLZMo7TugpxsROk_j0uQXDitKud2dnZIeQc4QoBiuuIKCVSgIoCipziAZmkyilWORymHgpOhWT8mJzEuAEArLickMWyH-pd5rusX9vs0Yft2rd-tcvmn74depcA3dXZ8xBc44z-Hvgmm7fW9MEH27jO1tnStc747pQcNbqN9uynTsnr7fxldk8XT3cPs5sFNblgPdVcomElFEYUvGhYnb8VIECUVvNScAEWyzIXlcibmgstZYW6ri1jybLlmvEpuRh1t8F_DDb2auOH0KWTKq-q9CSXZSLhSDLBx5icqm1w7zrsFILaZ6bGzFTKTO0zU5h2Ln-EdTS6bYLujIu_i4yJZJ3ttdnIiwnqVjb8Gfhf_AsTYXpW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>499623368</pqid></control><display><type>article</type><title>Study on the Morphology Evolution and Purification of Electrorefined Silicon</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lai, Yan-Qing ; Jia, Ming ; Tian, Zhong-Liang ; Li, Jie ; Yan, Jian-Feng ; Yi, Ji-Guang ; Wang, Zhi-Gang ; Liu, Ye-Xiang</creator><creatorcontrib>Lai, Yan-Qing ; Jia, Ming ; Tian, Zhong-Liang ; Li, Jie ; Yan, Jian-Feng ; Yi, Ji-Guang ; Wang, Zhi-Gang ; Liu, Ye-Xiang</creatorcontrib><description>A three-layer process and apparatus have been developed for electrorefining of silicon for solar cell application. The anode is solidified from a hypereutectic solution of copper and MG silicon. At the temperature of operation (1223 K (950 °C)), elements that have an electronegativity greater than that of silicon will remain at the anode ( e.g. , Cu, B, P, etc. ) and then the Cu-Si phase can be used under certain conditions as a filter for purifying silicon with an electrorefining process. According to the stable liquid electrode reactive surface, high current density is possible during electrorefining and such advantages obviously improve the rate of deposition, which is a key point to reach commercial development. Deposited silicon particles are found embedded in electrolyte. Furthermore, with increasing operation time and current density, recombination of silicon particles is revealed and yields silicon balls with a diameter of 2 cm. The analysis of the anode feed and refined silicon shows a remarkable reduction of B and P concentrations, from 12.7 to 2.4 ppmw and 98.6 to 4.3 ppmw, respectively. Besides, particular mention should be made of efficient removal of impurities such as Fe, Mn, and Ti, which are present in significant quantities in the anode feed.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-009-0154-1</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alumina ; Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Exact sciences and technology ; Grain size ; Materials Science ; Metallic Materials ; Metals. Metallurgy ; Nanotechnology ; Photovoltaic cells ; Principles ; Silicon ; Structural Materials ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2010-04, Vol.41 (4), p.929-935</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International 2010</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Minerals, Metals &amp; Materials Society Apr 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-a361c2807c5737f2d4b705058ea385350e18845954fd35a6691adde22193e3a23</citedby><cites>FETCH-LOGICAL-c452t-a361c2807c5737f2d4b705058ea385350e18845954fd35a6691adde22193e3a23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-009-0154-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-009-0154-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22536128$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lai, Yan-Qing</creatorcontrib><creatorcontrib>Jia, Ming</creatorcontrib><creatorcontrib>Tian, Zhong-Liang</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Yan, Jian-Feng</creatorcontrib><creatorcontrib>Yi, Ji-Guang</creatorcontrib><creatorcontrib>Wang, Zhi-Gang</creatorcontrib><creatorcontrib>Liu, Ye-Xiang</creatorcontrib><title>Study on the Morphology Evolution and Purification of Electrorefined Silicon</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>A three-layer process and apparatus have been developed for electrorefining of silicon for solar cell application. The anode is solidified from a hypereutectic solution of copper and MG silicon. At the temperature of operation (1223 K (950 °C)), elements that have an electronegativity greater than that of silicon will remain at the anode ( e.g. , Cu, B, P, etc. ) and then the Cu-Si phase can be used under certain conditions as a filter for purifying silicon with an electrorefining process. According to the stable liquid electrode reactive surface, high current density is possible during electrorefining and such advantages obviously improve the rate of deposition, which is a key point to reach commercial development. Deposited silicon particles are found embedded in electrolyte. Furthermore, with increasing operation time and current density, recombination of silicon particles is revealed and yields silicon balls with a diameter of 2 cm. The analysis of the anode feed and refined silicon shows a remarkable reduction of B and P concentrations, from 12.7 to 2.4 ppmw and 98.6 to 4.3 ppmw, respectively. Besides, particular mention should be made of efficient removal of impurities such as Fe, Mn, and Ti, which are present in significant quantities in the anode feed.</description><subject>Alumina</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Exact sciences and technology</subject><subject>Grain size</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Photovoltaic cells</subject><subject>Principles</subject><subject>Silicon</subject><subject>Structural Materials</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1UMtOwzAQtBBIlMIHcIuQOBp27dhJjqgqD6kIpMLZMo7TugpxsROk_j0uQXDitKud2dnZIeQc4QoBiuuIKCVSgIoCipziAZmkyilWORymHgpOhWT8mJzEuAEArLickMWyH-pd5rusX9vs0Yft2rd-tcvmn74depcA3dXZ8xBc44z-Hvgmm7fW9MEH27jO1tnStc747pQcNbqN9uynTsnr7fxldk8XT3cPs5sFNblgPdVcomElFEYUvGhYnb8VIECUVvNScAEWyzIXlcibmgstZYW6ri1jybLlmvEpuRh1t8F_DDb2auOH0KWTKq-q9CSXZSLhSDLBx5icqm1w7zrsFILaZ6bGzFTKTO0zU5h2Ln-EdTS6bYLujIu_i4yJZJ3ttdnIiwnqVjb8Gfhf_AsTYXpW</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Lai, Yan-Qing</creator><creator>Jia, Ming</creator><creator>Tian, Zhong-Liang</creator><creator>Li, Jie</creator><creator>Yan, Jian-Feng</creator><creator>Yi, Ji-Guang</creator><creator>Wang, Zhi-Gang</creator><creator>Liu, Ye-Xiang</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20100401</creationdate><title>Study on the Morphology Evolution and Purification of Electrorefined Silicon</title><author>Lai, Yan-Qing ; Jia, Ming ; Tian, Zhong-Liang ; Li, Jie ; Yan, Jian-Feng ; Yi, Ji-Guang ; Wang, Zhi-Gang ; Liu, Ye-Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-a361c2807c5737f2d4b705058ea385350e18845954fd35a6691adde22193e3a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alumina</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Exact sciences and technology</topic><topic>Grain size</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Photovoltaic cells</topic><topic>Principles</topic><topic>Silicon</topic><topic>Structural Materials</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Yan-Qing</creatorcontrib><creatorcontrib>Jia, Ming</creatorcontrib><creatorcontrib>Tian, Zhong-Liang</creatorcontrib><creatorcontrib>Li, Jie</creatorcontrib><creatorcontrib>Yan, Jian-Feng</creatorcontrib><creatorcontrib>Yi, Ji-Guang</creatorcontrib><creatorcontrib>Wang, Zhi-Gang</creatorcontrib><creatorcontrib>Liu, Ye-Xiang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Yan-Qing</au><au>Jia, Ming</au><au>Tian, Zhong-Liang</au><au>Li, Jie</au><au>Yan, Jian-Feng</au><au>Yi, Ji-Guang</au><au>Wang, Zhi-Gang</au><au>Liu, Ye-Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study on the Morphology Evolution and Purification of Electrorefined Silicon</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>41</volume><issue>4</issue><spage>929</spage><epage>935</epage><pages>929-935</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>A three-layer process and apparatus have been developed for electrorefining of silicon for solar cell application. The anode is solidified from a hypereutectic solution of copper and MG silicon. At the temperature of operation (1223 K (950 °C)), elements that have an electronegativity greater than that of silicon will remain at the anode ( e.g. , Cu, B, P, etc. ) and then the Cu-Si phase can be used under certain conditions as a filter for purifying silicon with an electrorefining process. According to the stable liquid electrode reactive surface, high current density is possible during electrorefining and such advantages obviously improve the rate of deposition, which is a key point to reach commercial development. Deposited silicon particles are found embedded in electrolyte. Furthermore, with increasing operation time and current density, recombination of silicon particles is revealed and yields silicon balls with a diameter of 2 cm. The analysis of the anode feed and refined silicon shows a remarkable reduction of B and P concentrations, from 12.7 to 2.4 ppmw and 98.6 to 4.3 ppmw, respectively. Besides, particular mention should be made of efficient removal of impurities such as Fe, Mn, and Ti, which are present in significant quantities in the anode feed.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-009-0154-1</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2010-04, Vol.41 (4), p.929-935
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_499623368
source SpringerLink Journals - AutoHoldings
subjects Alumina
Applied sciences
Characterization and Evaluation of Materials
Chemistry and Materials Science
Exact sciences and technology
Grain size
Materials Science
Metallic Materials
Metals. Metallurgy
Nanotechnology
Photovoltaic cells
Principles
Silicon
Structural Materials
Surfaces and Interfaces
Thin Films
title Study on the Morphology Evolution and Purification of Electrorefined Silicon
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20on%20the%20Morphology%20Evolution%20and%20Purification%20of%20Electrorefined%20Silicon&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Lai,%20Yan-Qing&rft.date=2010-04-01&rft.volume=41&rft.issue=4&rft.spage=929&rft.epage=935&rft.pages=929-935&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-009-0154-1&rft_dat=%3Cproquest_cross%3E2059328311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=499623368&rft_id=info:pmid/&rfr_iscdi=true