Deformation Structures of Pure Titanium during Shear Deformation
The deformation microstructure of commercial pure (CP) titanium formed in the theoretical shear zone of an equal channel angular pressing (ECAP) die during 3 or 4 passes is investigated by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The typical feature of the...
Gespeichert in:
Veröffentlicht in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2010-04, Vol.41 (4), p.787-794 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 794 |
---|---|
container_issue | 4 |
container_start_page | 787 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 41 |
creator | Chen, Y.J. Li, Y.J. Walmsley, J.C. Dumoulin, S. Roven, H.J. |
description | The deformation microstructure of commercial pure (CP) titanium formed in the theoretical shear zone of an equal channel angular pressing (ECAP) die during 3 or 4 passes is investigated by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The typical feature of the microstructure is that ultrafine grains coexist with coarse elongated grains with a high density of low-angle grain boundaries (LAGBs). Dislocation tangle zones (DTZs), dislocation cells (DCs), and subgrains are generated during shear deformation. The primary twin type has been found to be
Grain refinement appears to progress by continuous dynamic recrystallization (CDRX), in which dislocation movement to LAGBs leads to their evolution into high-angle grain boundaries (HAGBs). |
doi_str_mv | 10.1007/s11661-009-0040-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_499623177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2059328461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-f2a3d1b68b5b31c509d662f50c6dbc085af169d7253352b8adc6b8fadf3f1fcb3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG9F8BidaZq0uSnrX1hQ2PUckrTRLrvtmrSwfntTuqgXD8PM4b03Mz9CzhGuECC_DohCIAWQsTKguwMyQZ4xijKDwzhDzigXKTsmJyGsAAAlExNyc1e51m90V7dNsuh8b7veVyFpXfIah2RZd7qp-01S9r5u3pPFR6V98sd0So6cXofqbN-n5O3hfjl7ovOXx-fZ7ZzaDLGjLtWsRCMKww1Dy0GWQqSOgxWlsVBw7VDIMk85Yzw1hS6tMIXTpWMOnTVsSi7G3K1vP_sqdGrV9r6JK1UmZXwM8zyKcBRZ34bgK6e2vt5o_6UQ1MBJjZxU5KQGTmoXPZf7YB2sXjuvG1uHH2MaLxKIEHXpqAvbgUTlfw_4P_wbY594kA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>499623177</pqid></control><display><type>article</type><title>Deformation Structures of Pure Titanium during Shear Deformation</title><source>Springer Nature - Complete Springer Journals</source><creator>Chen, Y.J. ; Li, Y.J. ; Walmsley, J.C. ; Dumoulin, S. ; Roven, H.J.</creator><creatorcontrib>Chen, Y.J. ; Li, Y.J. ; Walmsley, J.C. ; Dumoulin, S. ; Roven, H.J.</creatorcontrib><description>The deformation microstructure of commercial pure (CP) titanium formed in the theoretical shear zone of an equal channel angular pressing (ECAP) die during 3 or 4 passes is investigated by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The typical feature of the microstructure is that ultrafine grains coexist with coarse elongated grains with a high density of low-angle grain boundaries (LAGBs). Dislocation tangle zones (DTZs), dislocation cells (DCs), and subgrains are generated during shear deformation. The primary twin type has been found to be
Grain refinement appears to progress by continuous dynamic recrystallization (CDRX), in which dislocation movement to LAGBs leads to their evolution into high-angle grain boundaries (HAGBs).</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-009-0040-x</identifier><identifier>CODEN: MMTAEB</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Alloys ; Applied sciences ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Deformation ; Exact sciences and technology ; Grain size ; Materials Science ; Metallic Materials ; Metallurgy ; Metals. Metallurgy ; Nanotechnology ; Structural Materials ; Studies ; Surfaces and Interfaces ; Symposium: Mechanical Behavior of Nanostructured Materials ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2010-04, Vol.41 (4), p.787-794</ispartof><rights>The Minerals, Metals & Materials Society and ASM International 2009</rights><rights>2015 INIST-CNRS</rights><rights>Copyright Minerals, Metals & Materials Society Apr 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-f2a3d1b68b5b31c509d662f50c6dbc085af169d7253352b8adc6b8fadf3f1fcb3</citedby><cites>FETCH-LOGICAL-c411t-f2a3d1b68b5b31c509d662f50c6dbc085af169d7253352b8adc6b8fadf3f1fcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11661-009-0040-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11661-009-0040-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22536110$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Y.J.</creatorcontrib><creatorcontrib>Li, Y.J.</creatorcontrib><creatorcontrib>Walmsley, J.C.</creatorcontrib><creatorcontrib>Dumoulin, S.</creatorcontrib><creatorcontrib>Roven, H.J.</creatorcontrib><title>Deformation Structures of Pure Titanium during Shear Deformation</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>The deformation microstructure of commercial pure (CP) titanium formed in the theoretical shear zone of an equal channel angular pressing (ECAP) die during 3 or 4 passes is investigated by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The typical feature of the microstructure is that ultrafine grains coexist with coarse elongated grains with a high density of low-angle grain boundaries (LAGBs). Dislocation tangle zones (DTZs), dislocation cells (DCs), and subgrains are generated during shear deformation. The primary twin type has been found to be
Grain refinement appears to progress by continuous dynamic recrystallization (CDRX), in which dislocation movement to LAGBs leads to their evolution into high-angle grain boundaries (HAGBs).</description><subject>Alloys</subject><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Deformation</subject><subject>Exact sciences and technology</subject><subject>Grain size</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Metallurgy</subject><subject>Metals. Metallurgy</subject><subject>Nanotechnology</subject><subject>Structural Materials</subject><subject>Studies</subject><subject>Surfaces and Interfaces</subject><subject>Symposium: Mechanical Behavior of Nanostructured Materials</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LxDAQxYMouK5-AG9F8BidaZq0uSnrX1hQ2PUckrTRLrvtmrSwfntTuqgXD8PM4b03Mz9CzhGuECC_DohCIAWQsTKguwMyQZ4xijKDwzhDzigXKTsmJyGsAAAlExNyc1e51m90V7dNsuh8b7veVyFpXfIah2RZd7qp-01S9r5u3pPFR6V98sd0So6cXofqbN-n5O3hfjl7ovOXx-fZ7ZzaDLGjLtWsRCMKww1Dy0GWQqSOgxWlsVBw7VDIMk85Yzw1hS6tMIXTpWMOnTVsSi7G3K1vP_sqdGrV9r6JK1UmZXwM8zyKcBRZ34bgK6e2vt5o_6UQ1MBJjZxU5KQGTmoXPZf7YB2sXjuvG1uHH2MaLxKIEHXpqAvbgUTlfw_4P_wbY594kA</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Chen, Y.J.</creator><creator>Li, Y.J.</creator><creator>Walmsley, J.C.</creator><creator>Dumoulin, S.</creator><creator>Roven, H.J.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20100401</creationdate><title>Deformation Structures of Pure Titanium during Shear Deformation</title><author>Chen, Y.J. ; Li, Y.J. ; Walmsley, J.C. ; Dumoulin, S. ; Roven, H.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-f2a3d1b68b5b31c509d662f50c6dbc085af169d7253352b8adc6b8fadf3f1fcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alloys</topic><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Deformation</topic><topic>Exact sciences and technology</topic><topic>Grain size</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Metallurgy</topic><topic>Metals. Metallurgy</topic><topic>Nanotechnology</topic><topic>Structural Materials</topic><topic>Studies</topic><topic>Surfaces and Interfaces</topic><topic>Symposium: Mechanical Behavior of Nanostructured Materials</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Y.J.</creatorcontrib><creatorcontrib>Li, Y.J.</creatorcontrib><creatorcontrib>Walmsley, J.C.</creatorcontrib><creatorcontrib>Dumoulin, S.</creatorcontrib><creatorcontrib>Roven, H.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Y.J.</au><au>Li, Y.J.</au><au>Walmsley, J.C.</au><au>Dumoulin, S.</au><au>Roven, H.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deformation Structures of Pure Titanium during Shear Deformation</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>41</volume><issue>4</issue><spage>787</spage><epage>794</epage><pages>787-794</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><coden>MMTAEB</coden><abstract>The deformation microstructure of commercial pure (CP) titanium formed in the theoretical shear zone of an equal channel angular pressing (ECAP) die during 3 or 4 passes is investigated by electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The typical feature of the microstructure is that ultrafine grains coexist with coarse elongated grains with a high density of low-angle grain boundaries (LAGBs). Dislocation tangle zones (DTZs), dislocation cells (DCs), and subgrains are generated during shear deformation. The primary twin type has been found to be
Grain refinement appears to progress by continuous dynamic recrystallization (CDRX), in which dislocation movement to LAGBs leads to their evolution into high-angle grain boundaries (HAGBs).</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11661-009-0040-x</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2010-04, Vol.41 (4), p.787-794 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_499623177 |
source | Springer Nature - Complete Springer Journals |
subjects | Alloys Applied sciences Characterization and Evaluation of Materials Chemistry and Materials Science Deformation Exact sciences and technology Grain size Materials Science Metallic Materials Metallurgy Metals. Metallurgy Nanotechnology Structural Materials Studies Surfaces and Interfaces Symposium: Mechanical Behavior of Nanostructured Materials Thin Films |
title | Deformation Structures of Pure Titanium during Shear Deformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deformation%20Structures%20of%20Pure%20Titanium%20during%20Shear%20Deformation&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Chen,%20Y.J.&rft.date=2010-04-01&rft.volume=41&rft.issue=4&rft.spage=787&rft.epage=794&rft.pages=787-794&rft.issn=1073-5623&rft.eissn=1543-1940&rft.coden=MMTAEB&rft_id=info:doi/10.1007/s11661-009-0040-x&rft_dat=%3Cproquest_cross%3E2059328461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=499623177&rft_id=info:pmid/&rfr_iscdi=true |