Physiological Modeling to Understand the Impact of Enzymes and Transporters on Drug and Metabolite Data and Bioavailability Estimates

Purpose To obtain mathematical solutions that correlate drug and metabolite exposure and systemic bioavailability (F sys) with physiological determinants, transporters and enzymes. Methods A series of physiologically-based pharmacokinetic (PBPK) models that included renal excretion and sequential me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pharmaceutical research 2010-07, Vol.27 (7), p.1237-1254
Hauptverfasser: Sun, Huadong, Pang, K. Sandy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1254
container_issue 7
container_start_page 1237
container_title Pharmaceutical research
container_volume 27
creator Sun, Huadong
Pang, K. Sandy
description Purpose To obtain mathematical solutions that correlate drug and metabolite exposure and systemic bioavailability (F sys) with physiological determinants, transporters and enzymes. Methods A series of physiologically-based pharmacokinetic (PBPK) models that included renal excretion and sequential metabolism within the intestine and/or liver as metabolite formation organs were developed. The area under the curve for drug (AUC) and formed metabolite (AUC{mi,P}) were solved by matrix inversion. Results The PBPK models revealed that AUC{mi,P} was dependent on dispositional parameters (transport and elimination) for the drug and metabolite. The solution was unique for each metabolite formation organ and was dependent on the type of drug and metabolite elimination organs. The AUC ratio of the formed metabolite after oral and intravenous drug dosing was useful for determination of the fraction absorbed (F abs) and not the systemic bioavailability (F sys) when either intestine or liver was the only drug elimination organ. Conclusions The AUC ratio of the formed metabolite after oral and intravenous drug dosing differed from that for drug and would not provide F sys. However, the AUC ratio of the formed metabolite for oral and intravenous drug dosing furnished the estimate of F abs when intestine or liver was the only drug metabolic organ.
doi_str_mv 10.1007/s11095-010-0049-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_375324326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057654361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c424t-7be9e062df7c936ad9386b7d971c44bdeb01229887a57b3a171b9e1749e45713</originalsourceid><addsrcrecordid>eNp9kM1u1DAURi1ERYfCA7ABC4llyvVPcuMltAOt1AokphI7y06cNFUmntoepGHPe-NppnTHypK_cz9fH0LeMDhlAPgxMgaqLIBBASBVwZ-RBStRFArkz-dkAchlUaNkx-RljHcAUDMlX5BjDgK5qnFB_ny_3cXBj74fGjPSa9-6cZh6mjy9mVoXYjJTS9Oto5frjWkS9R1dTr93axfpPlkFM8WNDymj1E_0PGz7h-DaJWP9OCRHz00yD3efB29-mWE0dsjBji5jGtYmufiKHHVmjO714Twhqy_L1dlFcfXt6-XZp6uikVymAq1TDiredtgoUZlWibqy2CpkjZS2dRYYz_-q0ZRohWHIrHIMpXKyRCZOyPu5dhP8_dbFpO_8Nkz5RS2wFFwKXmWIzVATfIzBdXoT8pZhpxnovXY9a9dZu95r1zzPvD0Ub-3atf8mHj1n4MMBMDF77rK1ZohPnOCAWO035DMXczT1Ljxt-L_X381DnfHa9CEX3_zgwASwupQi1_4FMMCkWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>375324326</pqid></control><display><type>article</type><title>Physiological Modeling to Understand the Impact of Enzymes and Transporters on Drug and Metabolite Data and Bioavailability Estimates</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Sun, Huadong ; Pang, K. Sandy</creator><creatorcontrib>Sun, Huadong ; Pang, K. Sandy</creatorcontrib><description>Purpose To obtain mathematical solutions that correlate drug and metabolite exposure and systemic bioavailability (F sys) with physiological determinants, transporters and enzymes. Methods A series of physiologically-based pharmacokinetic (PBPK) models that included renal excretion and sequential metabolism within the intestine and/or liver as metabolite formation organs were developed. The area under the curve for drug (AUC) and formed metabolite (AUC{mi,P}) were solved by matrix inversion. Results The PBPK models revealed that AUC{mi,P} was dependent on dispositional parameters (transport and elimination) for the drug and metabolite. The solution was unique for each metabolite formation organ and was dependent on the type of drug and metabolite elimination organs. The AUC ratio of the formed metabolite after oral and intravenous drug dosing was useful for determination of the fraction absorbed (F abs) and not the systemic bioavailability (F sys) when either intestine or liver was the only drug elimination organ. Conclusions The AUC ratio of the formed metabolite after oral and intravenous drug dosing differed from that for drug and would not provide F sys. However, the AUC ratio of the formed metabolite for oral and intravenous drug dosing furnished the estimate of F abs when intestine or liver was the only drug metabolic organ.</description><identifier>ISSN: 0724-8741</identifier><identifier>EISSN: 1573-904X</identifier><identifier>DOI: 10.1007/s11095-010-0049-2</identifier><identifier>PMID: 20372987</identifier><identifier>CODEN: PHREEB</identifier><language>eng</language><publisher>Boston: Boston : Springer US</publisher><subject>Area Under Curve ; area under the curve of metabolite ; AUC ratios ; bioavailability ; Biochemistry ; Biological and medical sciences ; Biological Availability ; Biological Transport ; Biomedical and Life Sciences ; Biomedical Engineering and Bioengineering ; Biomedicine ; drug disposition ; Enzymes ; Estimating techniques ; fraction absorbed ; General pharmacology ; Humans ; Intestines - enzymology ; Intestines - metabolism ; Liver - enzymology ; Liver - metabolism ; Mathematical models ; Medical Law ; Medical sciences ; metabolic enzymes ; Metabolism ; metabolite kinetics ; Models, Biological ; PBPK modeling ; Pharmaceutical Preparations ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology ; Pharmacology. Drug treatments ; Pharmacology/Toxicology ; Pharmacy ; Research Paper ; transporters</subject><ispartof>Pharmaceutical research, 2010-07, Vol.27 (7), p.1237-1254</ispartof><rights>Springer Science+Business Media, LLC 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c424t-7be9e062df7c936ad9386b7d971c44bdeb01229887a57b3a171b9e1749e45713</citedby><cites>FETCH-LOGICAL-c424t-7be9e062df7c936ad9386b7d971c44bdeb01229887a57b3a171b9e1749e45713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11095-010-0049-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11095-010-0049-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23207761$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20372987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Huadong</creatorcontrib><creatorcontrib>Pang, K. Sandy</creatorcontrib><title>Physiological Modeling to Understand the Impact of Enzymes and Transporters on Drug and Metabolite Data and Bioavailability Estimates</title><title>Pharmaceutical research</title><addtitle>Pharm Res</addtitle><addtitle>Pharm Res</addtitle><description>Purpose To obtain mathematical solutions that correlate drug and metabolite exposure and systemic bioavailability (F sys) with physiological determinants, transporters and enzymes. Methods A series of physiologically-based pharmacokinetic (PBPK) models that included renal excretion and sequential metabolism within the intestine and/or liver as metabolite formation organs were developed. The area under the curve for drug (AUC) and formed metabolite (AUC{mi,P}) were solved by matrix inversion. Results The PBPK models revealed that AUC{mi,P} was dependent on dispositional parameters (transport and elimination) for the drug and metabolite. The solution was unique for each metabolite formation organ and was dependent on the type of drug and metabolite elimination organs. The AUC ratio of the formed metabolite after oral and intravenous drug dosing was useful for determination of the fraction absorbed (F abs) and not the systemic bioavailability (F sys) when either intestine or liver was the only drug elimination organ. Conclusions The AUC ratio of the formed metabolite after oral and intravenous drug dosing differed from that for drug and would not provide F sys. However, the AUC ratio of the formed metabolite for oral and intravenous drug dosing furnished the estimate of F abs when intestine or liver was the only drug metabolic organ.</description><subject>Area Under Curve</subject><subject>area under the curve of metabolite</subject><subject>AUC ratios</subject><subject>bioavailability</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Biological Availability</subject><subject>Biological Transport</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>drug disposition</subject><subject>Enzymes</subject><subject>Estimating techniques</subject><subject>fraction absorbed</subject><subject>General pharmacology</subject><subject>Humans</subject><subject>Intestines - enzymology</subject><subject>Intestines - metabolism</subject><subject>Liver - enzymology</subject><subject>Liver - metabolism</subject><subject>Mathematical models</subject><subject>Medical Law</subject><subject>Medical sciences</subject><subject>metabolic enzymes</subject><subject>Metabolism</subject><subject>metabolite kinetics</subject><subject>Models, Biological</subject><subject>PBPK modeling</subject><subject>Pharmaceutical Preparations</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology</subject><subject>Pharmacology. Drug treatments</subject><subject>Pharmacology/Toxicology</subject><subject>Pharmacy</subject><subject>Research Paper</subject><subject>transporters</subject><issn>0724-8741</issn><issn>1573-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp9kM1u1DAURi1ERYfCA7ABC4llyvVPcuMltAOt1AokphI7y06cNFUmntoepGHPe-NppnTHypK_cz9fH0LeMDhlAPgxMgaqLIBBASBVwZ-RBStRFArkz-dkAchlUaNkx-RljHcAUDMlX5BjDgK5qnFB_ny_3cXBj74fGjPSa9-6cZh6mjy9mVoXYjJTS9Oto5frjWkS9R1dTr93axfpPlkFM8WNDymj1E_0PGz7h-DaJWP9OCRHz00yD3efB29-mWE0dsjBji5jGtYmufiKHHVmjO714Twhqy_L1dlFcfXt6-XZp6uikVymAq1TDiredtgoUZlWibqy2CpkjZS2dRYYz_-q0ZRohWHIrHIMpXKyRCZOyPu5dhP8_dbFpO_8Nkz5RS2wFFwKXmWIzVATfIzBdXoT8pZhpxnovXY9a9dZu95r1zzPvD0Ub-3atf8mHj1n4MMBMDF77rK1ZohPnOCAWO035DMXczT1Ljxt-L_X381DnfHa9CEX3_zgwASwupQi1_4FMMCkWA</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Sun, Huadong</creator><creator>Pang, K. Sandy</creator><general>Boston : Springer US</general><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>KB0</scope><scope>M0S</scope><scope>M1P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20100701</creationdate><title>Physiological Modeling to Understand the Impact of Enzymes and Transporters on Drug and Metabolite Data and Bioavailability Estimates</title><author>Sun, Huadong ; Pang, K. Sandy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c424t-7be9e062df7c936ad9386b7d971c44bdeb01229887a57b3a171b9e1749e45713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Area Under Curve</topic><topic>area under the curve of metabolite</topic><topic>AUC ratios</topic><topic>bioavailability</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Biological Availability</topic><topic>Biological Transport</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>drug disposition</topic><topic>Enzymes</topic><topic>Estimating techniques</topic><topic>fraction absorbed</topic><topic>General pharmacology</topic><topic>Humans</topic><topic>Intestines - enzymology</topic><topic>Intestines - metabolism</topic><topic>Liver - enzymology</topic><topic>Liver - metabolism</topic><topic>Mathematical models</topic><topic>Medical Law</topic><topic>Medical sciences</topic><topic>metabolic enzymes</topic><topic>Metabolism</topic><topic>metabolite kinetics</topic><topic>Models, Biological</topic><topic>PBPK modeling</topic><topic>Pharmaceutical Preparations</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology</topic><topic>Pharmacology. Drug treatments</topic><topic>Pharmacology/Toxicology</topic><topic>Pharmacy</topic><topic>Research Paper</topic><topic>transporters</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Huadong</creatorcontrib><creatorcontrib>Pang, K. Sandy</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Pharmaceutical research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Huadong</au><au>Pang, K. Sandy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physiological Modeling to Understand the Impact of Enzymes and Transporters on Drug and Metabolite Data and Bioavailability Estimates</atitle><jtitle>Pharmaceutical research</jtitle><stitle>Pharm Res</stitle><addtitle>Pharm Res</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>27</volume><issue>7</issue><spage>1237</spage><epage>1254</epage><pages>1237-1254</pages><issn>0724-8741</issn><eissn>1573-904X</eissn><coden>PHREEB</coden><abstract>Purpose To obtain mathematical solutions that correlate drug and metabolite exposure and systemic bioavailability (F sys) with physiological determinants, transporters and enzymes. Methods A series of physiologically-based pharmacokinetic (PBPK) models that included renal excretion and sequential metabolism within the intestine and/or liver as metabolite formation organs were developed. The area under the curve for drug (AUC) and formed metabolite (AUC{mi,P}) were solved by matrix inversion. Results The PBPK models revealed that AUC{mi,P} was dependent on dispositional parameters (transport and elimination) for the drug and metabolite. The solution was unique for each metabolite formation organ and was dependent on the type of drug and metabolite elimination organs. The AUC ratio of the formed metabolite after oral and intravenous drug dosing was useful for determination of the fraction absorbed (F abs) and not the systemic bioavailability (F sys) when either intestine or liver was the only drug elimination organ. Conclusions The AUC ratio of the formed metabolite after oral and intravenous drug dosing differed from that for drug and would not provide F sys. However, the AUC ratio of the formed metabolite for oral and intravenous drug dosing furnished the estimate of F abs when intestine or liver was the only drug metabolic organ.</abstract><cop>Boston</cop><pub>Boston : Springer US</pub><pmid>20372987</pmid><doi>10.1007/s11095-010-0049-2</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0724-8741
ispartof Pharmaceutical research, 2010-07, Vol.27 (7), p.1237-1254
issn 0724-8741
1573-904X
language eng
recordid cdi_proquest_journals_375324326
source MEDLINE; SpringerNature Journals
subjects Area Under Curve
area under the curve of metabolite
AUC ratios
bioavailability
Biochemistry
Biological and medical sciences
Biological Availability
Biological Transport
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
drug disposition
Enzymes
Estimating techniques
fraction absorbed
General pharmacology
Humans
Intestines - enzymology
Intestines - metabolism
Liver - enzymology
Liver - metabolism
Mathematical models
Medical Law
Medical sciences
metabolic enzymes
Metabolism
metabolite kinetics
Models, Biological
PBPK modeling
Pharmaceutical Preparations
Pharmaceutical technology. Pharmaceutical industry
Pharmacology
Pharmacology. Drug treatments
Pharmacology/Toxicology
Pharmacy
Research Paper
transporters
title Physiological Modeling to Understand the Impact of Enzymes and Transporters on Drug and Metabolite Data and Bioavailability Estimates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A39%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physiological%20Modeling%20to%20Understand%20the%20Impact%20of%20Enzymes%20and%20Transporters%20on%20Drug%20and%20Metabolite%20Data%20and%20Bioavailability%20Estimates&rft.jtitle=Pharmaceutical%20research&rft.au=Sun,%20Huadong&rft.date=2010-07-01&rft.volume=27&rft.issue=7&rft.spage=1237&rft.epage=1254&rft.pages=1237-1254&rft.issn=0724-8741&rft.eissn=1573-904X&rft.coden=PHREEB&rft_id=info:doi/10.1007/s11095-010-0049-2&rft_dat=%3Cproquest_cross%3E2057654361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=375324326&rft_id=info:pmid/20372987&rfr_iscdi=true