Optimizing Dosages of Seaweed Extract-Based Cytokinins and Zeatin Riboside for Improving Creeping Bentgrass Heat Tolerance
Seaweed (Ascophyllum nodosum Jol.) extract-based cytokinins (SWEC) have been used to improve turfgrass stress tolerance, but optimum dosages for improving creeping bentgrass (Agrostis stolonifera L.) heat tolerance are lacking. This study was designed to examine effects of SWEC at various dosages on...
Gespeichert in:
Veröffentlicht in: | Crop science 2010-01, Vol.50 (1), p.316-320 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 320 |
---|---|
container_issue | 1 |
container_start_page | 316 |
container_title | Crop science |
container_volume | 50 |
creator | Zhang, Xunzhong Wang, Kehua Ervin, E.H |
description | Seaweed (Ascophyllum nodosum Jol.) extract-based cytokinins (SWEC) have been used to improve turfgrass stress tolerance, but optimum dosages for improving creeping bentgrass (Agrostis stolonifera L.) heat tolerance are lacking. This study was designed to examine effects of SWEC at various dosages on creeping bentgrass heat tolerance and to compare their effects to a trans-zeatin riboside (t-ZR)-standard in a growth chamber. The SWEC and t-ZR were applied to the foliage of ‘L-93’ creeping bentgrass four times (14-d interval) at 1, 10, and 100 µM. After the second application, the grass was subjected to heat stress for 49 d at 35/25°C (day/night) in the initial experiment or 38/28°C (day/night) in the second experiment. The SWEC and t-ZR treatments at 10 and 100 µM alleviated the decline of turfgrass quality and chlorophyll content. They also increased leaf t-ZR content and nitrate reductase (NR) activity, relative to the control, especially under 38/28°C (day/night). These data indicate that improvements under heat stress may be associated with an increase in plant t-ZR levels and NR activity due to SWEC or t-ZR application. Results suggest that repeated foliar application of SWEC at 10 µM may be an effective approach for improving turfgrass performance and heat stress tolerance. |
doi_str_mv | 10.2135/cropsci2009.02.0090 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_366293179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2054670861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3960-5c8fe41dce092aa31a3d75432ba55fe3907013f2f106bdf5eb87e073cf6ea4d53</originalsourceid><addsrcrecordid>eNqNUE1PGzEQtRCVCLS_oIda3Dcd2_E6e4QtlEhIqQhIVS_WZHccmSbrrb2Uhl-PV-HAsaf50Htv3jzGPguYSqH01yaGPjVeAlRTkNNc4IhNxEzpAkqtjtkEQIhCzNXPE3aa0iMAmMroCXtZ9oPf-Rffbfi3kHBDiQfHV4TPRC2_-jdEbIbiElOe6v0QfvvOd4lj1_JfhIPv-J1fh-Rb4i5Evtj1Mfwd1epI1I_NJXXDJmJK_CYT-H3YUsSuoY_sg8Ntok9v9Yw9XF_d1zfF7fL7or64LRpVlVDoZu5oJtqGoJKISqBqjZ4puUatHakKDAjlpBNQrlunaT03BEY1riSctVqdsfODbnb254nSYB_DU-zySavKUlZKmCqD1AGUo0wpkrN99DuMeyvAjhnbdxlbkHbMOLOuD6xnv6X9_1Bsvaplfbf8saoX4x7km9CXg5DDYHETfbIPK5n_gmxOG6PVKwJrkXI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>366293179</pqid></control><display><type>article</type><title>Optimizing Dosages of Seaweed Extract-Based Cytokinins and Zeatin Riboside for Improving Creeping Bentgrass Heat Tolerance</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Zhang, Xunzhong ; Wang, Kehua ; Ervin, E.H</creator><creatorcontrib>Zhang, Xunzhong ; Wang, Kehua ; Ervin, E.H</creatorcontrib><description>Seaweed (Ascophyllum nodosum Jol.) extract-based cytokinins (SWEC) have been used to improve turfgrass stress tolerance, but optimum dosages for improving creeping bentgrass (Agrostis stolonifera L.) heat tolerance are lacking. This study was designed to examine effects of SWEC at various dosages on creeping bentgrass heat tolerance and to compare their effects to a trans-zeatin riboside (t-ZR)-standard in a growth chamber. The SWEC and t-ZR were applied to the foliage of ‘L-93’ creeping bentgrass four times (14-d interval) at 1, 10, and 100 µM. After the second application, the grass was subjected to heat stress for 49 d at 35/25°C (day/night) in the initial experiment or 38/28°C (day/night) in the second experiment. The SWEC and t-ZR treatments at 10 and 100 µM alleviated the decline of turfgrass quality and chlorophyll content. They also increased leaf t-ZR content and nitrate reductase (NR) activity, relative to the control, especially under 38/28°C (day/night). These data indicate that improvements under heat stress may be associated with an increase in plant t-ZR levels and NR activity due to SWEC or t-ZR application. Results suggest that repeated foliar application of SWEC at 10 µM may be an effective approach for improving turfgrass performance and heat stress tolerance.</description><identifier>ISSN: 0011-183X</identifier><identifier>EISSN: 1435-0653</identifier><identifier>DOI: 10.2135/cropsci2009.02.0090</identifier><identifier>CODEN: CRPSAY</identifier><language>eng</language><publisher>Madison: Crop Science Society of America</publisher><subject>Agrostis stolonifera ; air temperature ; Algae ; appearance (quality) ; application rate ; application timing ; Ascophyllum nodosum ; chlorophyll ; Crop science ; Cultivars ; cytokinins ; Foliage ; foliar application ; Fucaceae ; Growth chambers ; heat stress ; Heat tolerance ; lawns and turf ; plant density ; plant extracts ; plant growth substances ; turf grasses ; turf quality ; Turfgrasses ; zeatin</subject><ispartof>Crop science, 2010-01, Vol.50 (1), p.316-320</ispartof><rights>Crop Science Society of America</rights><rights>Copyright American Society of Agronomy Jan/Feb 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3960-5c8fe41dce092aa31a3d75432ba55fe3907013f2f106bdf5eb87e073cf6ea4d53</citedby><cites>FETCH-LOGICAL-c3960-5c8fe41dce092aa31a3d75432ba55fe3907013f2f106bdf5eb87e073cf6ea4d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2135%2Fcropsci2009.02.0090$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2135%2Fcropsci2009.02.0090$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhang, Xunzhong</creatorcontrib><creatorcontrib>Wang, Kehua</creatorcontrib><creatorcontrib>Ervin, E.H</creatorcontrib><title>Optimizing Dosages of Seaweed Extract-Based Cytokinins and Zeatin Riboside for Improving Creeping Bentgrass Heat Tolerance</title><title>Crop science</title><description>Seaweed (Ascophyllum nodosum Jol.) extract-based cytokinins (SWEC) have been used to improve turfgrass stress tolerance, but optimum dosages for improving creeping bentgrass (Agrostis stolonifera L.) heat tolerance are lacking. This study was designed to examine effects of SWEC at various dosages on creeping bentgrass heat tolerance and to compare their effects to a trans-zeatin riboside (t-ZR)-standard in a growth chamber. The SWEC and t-ZR were applied to the foliage of ‘L-93’ creeping bentgrass four times (14-d interval) at 1, 10, and 100 µM. After the second application, the grass was subjected to heat stress for 49 d at 35/25°C (day/night) in the initial experiment or 38/28°C (day/night) in the second experiment. The SWEC and t-ZR treatments at 10 and 100 µM alleviated the decline of turfgrass quality and chlorophyll content. They also increased leaf t-ZR content and nitrate reductase (NR) activity, relative to the control, especially under 38/28°C (day/night). These data indicate that improvements under heat stress may be associated with an increase in plant t-ZR levels and NR activity due to SWEC or t-ZR application. Results suggest that repeated foliar application of SWEC at 10 µM may be an effective approach for improving turfgrass performance and heat stress tolerance.</description><subject>Agrostis stolonifera</subject><subject>air temperature</subject><subject>Algae</subject><subject>appearance (quality)</subject><subject>application rate</subject><subject>application timing</subject><subject>Ascophyllum nodosum</subject><subject>chlorophyll</subject><subject>Crop science</subject><subject>Cultivars</subject><subject>cytokinins</subject><subject>Foliage</subject><subject>foliar application</subject><subject>Fucaceae</subject><subject>Growth chambers</subject><subject>heat stress</subject><subject>Heat tolerance</subject><subject>lawns and turf</subject><subject>plant density</subject><subject>plant extracts</subject><subject>plant growth substances</subject><subject>turf grasses</subject><subject>turf quality</subject><subject>Turfgrasses</subject><subject>zeatin</subject><issn>0011-183X</issn><issn>1435-0653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNUE1PGzEQtRCVCLS_oIda3Dcd2_E6e4QtlEhIqQhIVS_WZHccmSbrrb2Uhl-PV-HAsaf50Htv3jzGPguYSqH01yaGPjVeAlRTkNNc4IhNxEzpAkqtjtkEQIhCzNXPE3aa0iMAmMroCXtZ9oPf-Rffbfi3kHBDiQfHV4TPRC2_-jdEbIbiElOe6v0QfvvOd4lj1_JfhIPv-J1fh-Rb4i5Evtj1Mfwd1epI1I_NJXXDJmJK_CYT-H3YUsSuoY_sg8Ntok9v9Yw9XF_d1zfF7fL7or64LRpVlVDoZu5oJtqGoJKISqBqjZ4puUatHakKDAjlpBNQrlunaT03BEY1riSctVqdsfODbnb254nSYB_DU-zySavKUlZKmCqD1AGUo0wpkrN99DuMeyvAjhnbdxlbkHbMOLOuD6xnv6X9_1Bsvaplfbf8saoX4x7km9CXg5DDYHETfbIPK5n_gmxOG6PVKwJrkXI</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Zhang, Xunzhong</creator><creator>Wang, Kehua</creator><creator>Ervin, E.H</creator><general>Crop Science Society of America</general><general>American Society of Agronomy</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>201001</creationdate><title>Optimizing Dosages of Seaweed Extract-Based Cytokinins and Zeatin Riboside for Improving Creeping Bentgrass Heat Tolerance</title><author>Zhang, Xunzhong ; Wang, Kehua ; Ervin, E.H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3960-5c8fe41dce092aa31a3d75432ba55fe3907013f2f106bdf5eb87e073cf6ea4d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Agrostis stolonifera</topic><topic>air temperature</topic><topic>Algae</topic><topic>appearance (quality)</topic><topic>application rate</topic><topic>application timing</topic><topic>Ascophyllum nodosum</topic><topic>chlorophyll</topic><topic>Crop science</topic><topic>Cultivars</topic><topic>cytokinins</topic><topic>Foliage</topic><topic>foliar application</topic><topic>Fucaceae</topic><topic>Growth chambers</topic><topic>heat stress</topic><topic>Heat tolerance</topic><topic>lawns and turf</topic><topic>plant density</topic><topic>plant extracts</topic><topic>plant growth substances</topic><topic>turf grasses</topic><topic>turf quality</topic><topic>Turfgrasses</topic><topic>zeatin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xunzhong</creatorcontrib><creatorcontrib>Wang, Kehua</creatorcontrib><creatorcontrib>Ervin, E.H</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Crop science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xunzhong</au><au>Wang, Kehua</au><au>Ervin, E.H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Dosages of Seaweed Extract-Based Cytokinins and Zeatin Riboside for Improving Creeping Bentgrass Heat Tolerance</atitle><jtitle>Crop science</jtitle><date>2010-01</date><risdate>2010</risdate><volume>50</volume><issue>1</issue><spage>316</spage><epage>320</epage><pages>316-320</pages><issn>0011-183X</issn><eissn>1435-0653</eissn><coden>CRPSAY</coden><abstract>Seaweed (Ascophyllum nodosum Jol.) extract-based cytokinins (SWEC) have been used to improve turfgrass stress tolerance, but optimum dosages for improving creeping bentgrass (Agrostis stolonifera L.) heat tolerance are lacking. This study was designed to examine effects of SWEC at various dosages on creeping bentgrass heat tolerance and to compare their effects to a trans-zeatin riboside (t-ZR)-standard in a growth chamber. The SWEC and t-ZR were applied to the foliage of ‘L-93’ creeping bentgrass four times (14-d interval) at 1, 10, and 100 µM. After the second application, the grass was subjected to heat stress for 49 d at 35/25°C (day/night) in the initial experiment or 38/28°C (day/night) in the second experiment. The SWEC and t-ZR treatments at 10 and 100 µM alleviated the decline of turfgrass quality and chlorophyll content. They also increased leaf t-ZR content and nitrate reductase (NR) activity, relative to the control, especially under 38/28°C (day/night). These data indicate that improvements under heat stress may be associated with an increase in plant t-ZR levels and NR activity due to SWEC or t-ZR application. Results suggest that repeated foliar application of SWEC at 10 µM may be an effective approach for improving turfgrass performance and heat stress tolerance.</abstract><cop>Madison</cop><pub>Crop Science Society of America</pub><doi>10.2135/cropsci2009.02.0090</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-183X |
ispartof | Crop science, 2010-01, Vol.50 (1), p.316-320 |
issn | 0011-183X 1435-0653 |
language | eng |
recordid | cdi_proquest_journals_366293179 |
source | Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Agrostis stolonifera air temperature Algae appearance (quality) application rate application timing Ascophyllum nodosum chlorophyll Crop science Cultivars cytokinins Foliage foliar application Fucaceae Growth chambers heat stress Heat tolerance lawns and turf plant density plant extracts plant growth substances turf grasses turf quality Turfgrasses zeatin |
title | Optimizing Dosages of Seaweed Extract-Based Cytokinins and Zeatin Riboside for Improving Creeping Bentgrass Heat Tolerance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A31%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Dosages%20of%20Seaweed%20Extract-Based%20Cytokinins%20and%20Zeatin%20Riboside%20for%20Improving%20Creeping%20Bentgrass%20Heat%20Tolerance&rft.jtitle=Crop%20science&rft.au=Zhang,%20Xunzhong&rft.date=2010-01&rft.volume=50&rft.issue=1&rft.spage=316&rft.epage=320&rft.pages=316-320&rft.issn=0011-183X&rft.eissn=1435-0653&rft.coden=CRPSAY&rft_id=info:doi/10.2135/cropsci2009.02.0090&rft_dat=%3Cproquest_cross%3E2054670861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=366293179&rft_id=info:pmid/&rfr_iscdi=true |