Forecasting Cotton Yield in the Southeastern United States using Coupled Global Circulation Models

We developed methods of forecasting cotton (Gossypium hirsutum L. var. hirsutum) yields at a county level 3 mo before harvest for the states of Alabama and Georgia. Cotton yield historical records for 57 counties were obtained from NASS and detrended using a low-pass spectral filter. A Canonical Cor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy journal 2010-01, Vol.102 (1), p.187-196
Hauptverfasser: Baigorria, Guillermo A, Chelliah, Muthuvel, Mo, Kingtse C, Romero, Consuelo C, Jones, James W, O'Brien, James J, Higgins, R. Wayne
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 196
container_issue 1
container_start_page 187
container_title Agronomy journal
container_volume 102
creator Baigorria, Guillermo A
Chelliah, Muthuvel
Mo, Kingtse C
Romero, Consuelo C
Jones, James W
O'Brien, James J
Higgins, R. Wayne
description We developed methods of forecasting cotton (Gossypium hirsutum L. var. hirsutum) yields at a county level 3 mo before harvest for the states of Alabama and Georgia. Cotton yield historical records for 57 counties were obtained from NASS and detrended using a low-pass spectral filter. A Canonical Correlation Analysis regression-based model was annually recalibrated to incorporate the year-by-year accumulating data: (i) April–June (during vegetative growth) observed rainfall for the forecasting year, and (ii) July–September (during reproductive growth) global-scaled 2-m mean temperatures for years before the forecasting year, beginning with 1970. We produced two types of forecasts: short range and medium range. The short-range near-term yield forecast (just before initiating harvest in the region) used gridded assimilated observed 2-m mean temperatures obtained from the NCEP-NCAR CDAS Reanalysis data. The medium-range forecast (3 mo before harvest) used 2-m mean temperature retrospective forecasts from the operational NOAA/NWS/NCEP Climate Forecasts System coupled global circulation model. The short-range, near-term forecast performance was measured by leave-one-out cross-validation and retroactive validation, whereas medium-range forecast performance used the previous two methods plus a proposed coral-reef validation method. The agreement between short-range near-term forecast and actual cotton yield was statistically significant at the 0.05 level in 31 out of 57 counties. For 48% of these 31 counties, the agreements between medium-range forecasts and actual cotton yields were statistically significant at the 0.05 level. The goodness-of-fit index for those 15 counties was 0.51 and the RMSE ranged from 13 to 31% of the annual yield.
doi_str_mv 10.2134/agronj2009.0201
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_336827627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2042273791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4791-91440ef5b5a45955fd57dc78213c66fbdc6e508508620d93d03afb08ac1caefc3</originalsourceid><addsrcrecordid>eNqFkMFrFDEUxoMouFbPHg2Cx2lfkklmcpJlsduW2kLXPXgaMpmkZomTNckg_e-bYZZ6FAIPXn7f9_E-hD4SOKeE1RfqMYbxQAHkOVAgr9CK1IxXIGr-Gq0AgFZECvoWvUvpAECIrMkK9ZchGq1SduMj3oScw4h_OuMH7Eacfxm8C1MZBTBxxPvRZTPgXVbZJDylRTQdfVlufeiVxxsX9eRVdsXoexiMT-_RG6t8Mh9O8wztL7_92FxVt_fb6836ttJ1I0klSV2DsbznquaSczvwZtBNW47TQth-0MJwaMsTFAbJBmDK9tAqTbQyVrMz9HnxPcbwZzIpd4cwxbFEdoyJljaCNgW6WCAdQ0rR2O4Y3W8VnzoC3dxj96_Hbu6xKL6cbFXSytuoRu3Si4xSxgiVsnBfF-6v8-bpf7bdentD19uH-7ubeXdK-rQ4WBVmvqTsd_MHkIa2lAn2DI7GkMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>336827627</pqid></control><display><type>article</type><title>Forecasting Cotton Yield in the Southeastern United States using Coupled Global Circulation Models</title><source>Access via Wiley Online Library</source><creator>Baigorria, Guillermo A ; Chelliah, Muthuvel ; Mo, Kingtse C ; Romero, Consuelo C ; Jones, James W ; O'Brien, James J ; Higgins, R. Wayne</creator><creatorcontrib>Baigorria, Guillermo A ; Chelliah, Muthuvel ; Mo, Kingtse C ; Romero, Consuelo C ; Jones, James W ; O'Brien, James J ; Higgins, R. Wayne</creatorcontrib><description>We developed methods of forecasting cotton (Gossypium hirsutum L. var. hirsutum) yields at a county level 3 mo before harvest for the states of Alabama and Georgia. Cotton yield historical records for 57 counties were obtained from NASS and detrended using a low-pass spectral filter. A Canonical Correlation Analysis regression-based model was annually recalibrated to incorporate the year-by-year accumulating data: (i) April–June (during vegetative growth) observed rainfall for the forecasting year, and (ii) July–September (during reproductive growth) global-scaled 2-m mean temperatures for years before the forecasting year, beginning with 1970. We produced two types of forecasts: short range and medium range. The short-range near-term yield forecast (just before initiating harvest in the region) used gridded assimilated observed 2-m mean temperatures obtained from the NCEP-NCAR CDAS Reanalysis data. The medium-range forecast (3 mo before harvest) used 2-m mean temperature retrospective forecasts from the operational NOAA/NWS/NCEP Climate Forecasts System coupled global circulation model. The short-range, near-term forecast performance was measured by leave-one-out cross-validation and retroactive validation, whereas medium-range forecast performance used the previous two methods plus a proposed coral-reef validation method. The agreement between short-range near-term forecast and actual cotton yield was statistically significant at the 0.05 level in 31 out of 57 counties. For 48% of these 31 counties, the agreements between medium-range forecasts and actual cotton yields were statistically significant at the 0.05 level. The goodness-of-fit index for those 15 counties was 0.51 and the RMSE ranged from 13 to 31% of the annual yield.</description><identifier>ISSN: 0002-1962</identifier><identifier>EISSN: 1435-0645</identifier><identifier>DOI: 10.2134/agronj2009.0201</identifier><identifier>CODEN: AGJOAT</identifier><language>eng</language><publisher>Madison: American Society of Agronomy</publisher><subject>Agronomy. Soil science and plant productions ; air temperature ; Biological and medical sciences ; calibration ; correlation ; cotton ; crop models ; crop yield ; data analysis ; fiber crops ; flowering ; Fundamental and applied biological sciences. Psychology ; General Circulation Models ; Gossypium hirsutum ; harvest date ; model validation ; prediction ; rain ; vegetative growth ; yield forecasting</subject><ispartof>Agronomy journal, 2010-01, Vol.102 (1), p.187-196</ispartof><rights>Copyright © 2010 by the American Society of Agronomy</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Society of Agronomy Jan/Feb 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4791-91440ef5b5a45955fd57dc78213c66fbdc6e508508620d93d03afb08ac1caefc3</citedby><cites>FETCH-LOGICAL-c4791-91440ef5b5a45955fd57dc78213c66fbdc6e508508620d93d03afb08ac1caefc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2134%2Fagronj2009.0201$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2134%2Fagronj2009.0201$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22331299$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baigorria, Guillermo A</creatorcontrib><creatorcontrib>Chelliah, Muthuvel</creatorcontrib><creatorcontrib>Mo, Kingtse C</creatorcontrib><creatorcontrib>Romero, Consuelo C</creatorcontrib><creatorcontrib>Jones, James W</creatorcontrib><creatorcontrib>O'Brien, James J</creatorcontrib><creatorcontrib>Higgins, R. Wayne</creatorcontrib><title>Forecasting Cotton Yield in the Southeastern United States using Coupled Global Circulation Models</title><title>Agronomy journal</title><description>We developed methods of forecasting cotton (Gossypium hirsutum L. var. hirsutum) yields at a county level 3 mo before harvest for the states of Alabama and Georgia. Cotton yield historical records for 57 counties were obtained from NASS and detrended using a low-pass spectral filter. A Canonical Correlation Analysis regression-based model was annually recalibrated to incorporate the year-by-year accumulating data: (i) April–June (during vegetative growth) observed rainfall for the forecasting year, and (ii) July–September (during reproductive growth) global-scaled 2-m mean temperatures for years before the forecasting year, beginning with 1970. We produced two types of forecasts: short range and medium range. The short-range near-term yield forecast (just before initiating harvest in the region) used gridded assimilated observed 2-m mean temperatures obtained from the NCEP-NCAR CDAS Reanalysis data. The medium-range forecast (3 mo before harvest) used 2-m mean temperature retrospective forecasts from the operational NOAA/NWS/NCEP Climate Forecasts System coupled global circulation model. The short-range, near-term forecast performance was measured by leave-one-out cross-validation and retroactive validation, whereas medium-range forecast performance used the previous two methods plus a proposed coral-reef validation method. The agreement between short-range near-term forecast and actual cotton yield was statistically significant at the 0.05 level in 31 out of 57 counties. For 48% of these 31 counties, the agreements between medium-range forecasts and actual cotton yields were statistically significant at the 0.05 level. The goodness-of-fit index for those 15 counties was 0.51 and the RMSE ranged from 13 to 31% of the annual yield.</description><subject>Agronomy. Soil science and plant productions</subject><subject>air temperature</subject><subject>Biological and medical sciences</subject><subject>calibration</subject><subject>correlation</subject><subject>cotton</subject><subject>crop models</subject><subject>crop yield</subject><subject>data analysis</subject><subject>fiber crops</subject><subject>flowering</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General Circulation Models</subject><subject>Gossypium hirsutum</subject><subject>harvest date</subject><subject>model validation</subject><subject>prediction</subject><subject>rain</subject><subject>vegetative growth</subject><subject>yield forecasting</subject><issn>0002-1962</issn><issn>1435-0645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkMFrFDEUxoMouFbPHg2Cx2lfkklmcpJlsduW2kLXPXgaMpmkZomTNckg_e-bYZZ6FAIPXn7f9_E-hD4SOKeE1RfqMYbxQAHkOVAgr9CK1IxXIGr-Gq0AgFZECvoWvUvpAECIrMkK9ZchGq1SduMj3oScw4h_OuMH7Eacfxm8C1MZBTBxxPvRZTPgXVbZJDylRTQdfVlufeiVxxsX9eRVdsXoexiMT-_RG6t8Mh9O8wztL7_92FxVt_fb6836ttJ1I0klSV2DsbznquaSczvwZtBNW47TQth-0MJwaMsTFAbJBmDK9tAqTbQyVrMz9HnxPcbwZzIpd4cwxbFEdoyJljaCNgW6WCAdQ0rR2O4Y3W8VnzoC3dxj96_Hbu6xKL6cbFXSytuoRu3Si4xSxgiVsnBfF-6v8-bpf7bdentD19uH-7ubeXdK-rQ4WBVmvqTsd_MHkIa2lAn2DI7GkMw</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Baigorria, Guillermo A</creator><creator>Chelliah, Muthuvel</creator><creator>Mo, Kingtse C</creator><creator>Romero, Consuelo C</creator><creator>Jones, James W</creator><creator>O'Brien, James J</creator><creator>Higgins, R. Wayne</creator><general>American Society of Agronomy</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M0K</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>201001</creationdate><title>Forecasting Cotton Yield in the Southeastern United States using Coupled Global Circulation Models</title><author>Baigorria, Guillermo A ; Chelliah, Muthuvel ; Mo, Kingtse C ; Romero, Consuelo C ; Jones, James W ; O'Brien, James J ; Higgins, R. Wayne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4791-91440ef5b5a45955fd57dc78213c66fbdc6e508508620d93d03afb08ac1caefc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>air temperature</topic><topic>Biological and medical sciences</topic><topic>calibration</topic><topic>correlation</topic><topic>cotton</topic><topic>crop models</topic><topic>crop yield</topic><topic>data analysis</topic><topic>fiber crops</topic><topic>flowering</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General Circulation Models</topic><topic>Gossypium hirsutum</topic><topic>harvest date</topic><topic>model validation</topic><topic>prediction</topic><topic>rain</topic><topic>vegetative growth</topic><topic>yield forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baigorria, Guillermo A</creatorcontrib><creatorcontrib>Chelliah, Muthuvel</creatorcontrib><creatorcontrib>Mo, Kingtse C</creatorcontrib><creatorcontrib>Romero, Consuelo C</creatorcontrib><creatorcontrib>Jones, James W</creatorcontrib><creatorcontrib>O'Brien, James J</creatorcontrib><creatorcontrib>Higgins, R. Wayne</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Agricultural Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Agronomy journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baigorria, Guillermo A</au><au>Chelliah, Muthuvel</au><au>Mo, Kingtse C</au><au>Romero, Consuelo C</au><au>Jones, James W</au><au>O'Brien, James J</au><au>Higgins, R. Wayne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting Cotton Yield in the Southeastern United States using Coupled Global Circulation Models</atitle><jtitle>Agronomy journal</jtitle><date>2010-01</date><risdate>2010</risdate><volume>102</volume><issue>1</issue><spage>187</spage><epage>196</epage><pages>187-196</pages><issn>0002-1962</issn><eissn>1435-0645</eissn><coden>AGJOAT</coden><abstract>We developed methods of forecasting cotton (Gossypium hirsutum L. var. hirsutum) yields at a county level 3 mo before harvest for the states of Alabama and Georgia. Cotton yield historical records for 57 counties were obtained from NASS and detrended using a low-pass spectral filter. A Canonical Correlation Analysis regression-based model was annually recalibrated to incorporate the year-by-year accumulating data: (i) April–June (during vegetative growth) observed rainfall for the forecasting year, and (ii) July–September (during reproductive growth) global-scaled 2-m mean temperatures for years before the forecasting year, beginning with 1970. We produced two types of forecasts: short range and medium range. The short-range near-term yield forecast (just before initiating harvest in the region) used gridded assimilated observed 2-m mean temperatures obtained from the NCEP-NCAR CDAS Reanalysis data. The medium-range forecast (3 mo before harvest) used 2-m mean temperature retrospective forecasts from the operational NOAA/NWS/NCEP Climate Forecasts System coupled global circulation model. The short-range, near-term forecast performance was measured by leave-one-out cross-validation and retroactive validation, whereas medium-range forecast performance used the previous two methods plus a proposed coral-reef validation method. The agreement between short-range near-term forecast and actual cotton yield was statistically significant at the 0.05 level in 31 out of 57 counties. For 48% of these 31 counties, the agreements between medium-range forecasts and actual cotton yields were statistically significant at the 0.05 level. The goodness-of-fit index for those 15 counties was 0.51 and the RMSE ranged from 13 to 31% of the annual yield.</abstract><cop>Madison</cop><pub>American Society of Agronomy</pub><doi>10.2134/agronj2009.0201</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-1962
ispartof Agronomy journal, 2010-01, Vol.102 (1), p.187-196
issn 0002-1962
1435-0645
language eng
recordid cdi_proquest_journals_336827627
source Access via Wiley Online Library
subjects Agronomy. Soil science and plant productions
air temperature
Biological and medical sciences
calibration
correlation
cotton
crop models
crop yield
data analysis
fiber crops
flowering
Fundamental and applied biological sciences. Psychology
General Circulation Models
Gossypium hirsutum
harvest date
model validation
prediction
rain
vegetative growth
yield forecasting
title Forecasting Cotton Yield in the Southeastern United States using Coupled Global Circulation Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A56%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20Cotton%20Yield%20in%20the%20Southeastern%20United%20States%20using%20Coupled%20Global%20Circulation%20Models&rft.jtitle=Agronomy%20journal&rft.au=Baigorria,%20Guillermo%20A&rft.date=2010-01&rft.volume=102&rft.issue=1&rft.spage=187&rft.epage=196&rft.pages=187-196&rft.issn=0002-1962&rft.eissn=1435-0645&rft.coden=AGJOAT&rft_id=info:doi/10.2134/agronj2009.0201&rft_dat=%3Cproquest_cross%3E2042273791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=336827627&rft_id=info:pmid/&rfr_iscdi=true