Integrating Machine Learning and Large Language Models to Advance Exploration of Electrochemical Reactions
Electrochemical C−H oxidation reactions offer a sustainable route to functionalize hydrocarbons, yet identifying suitable substrates and optimizing synthesis remain challenging. Here, we report an integrated approach combining machine learning and large language models to streamline the exploration...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2025-02, Vol.137 (6), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 137 |
creator | Zheng, Zhiling Florit, Federico Jin, Brooke Wu, Haoyang Li, Shih‐Cheng Nandiwale, Kakasaheb Y. Salazar, Chase A. Mustakis, Jason G. Green, William H. Jensen, Klavs F. |
description | Electrochemical C−H oxidation reactions offer a sustainable route to functionalize hydrocarbons, yet identifying suitable substrates and optimizing synthesis remain challenging. Here, we report an integrated approach combining machine learning and large language models to streamline the exploration of electrochemical C−H oxidation reactions. Utilizing a batch rapid screening electrochemical platform, we evaluated a wide range of reactions, initially classifying substrates by their reactivity, while LLMs text‐mined literature data to augment the training set. The resulting ML models for reactivity prediction achieved high accuracy (>90 %) and enabled virtual screening of a large set of commercially available molecules. To optimize reaction conditions for selected substrates, LLMs were prompted to generate code that iteratively improved yields. This human‐AI collaboration proved effective, efficiently identifying high‐yield conditions for 8 drug‐like substances or intermediates. Notably, we benchmarked the accuracy and reliability of 12 different LLMs–including LLaMA series, Claude series, OpenAI o1, and GPT‐4‐on code generation and function calling related to ML based on natural language prompts given by chemists to showcase potentials for accelerating research across four diverse tasks. In addition, we collected an experimental benchmark dataset comprising 1071 reaction conditions and yields for electrochemical C−H oxidation reactions.
In this study, we integrate machine learning (ML) and large language models (LLMs) to accelerate the exploration of electrochemical C−H oxidation reactions. A rapid screening platform is developed for experimental screening, while LLMs assist in literature mining and generate Python code to train ML models for reactivity prediction and synthesis optimization. This human‐AI collaboration enables synthetic chemists to streamline discovery processes and optimize reaction conditions efficiently. |
doi_str_mv | 10.1002/ange.202418074 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3163416459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3163416459</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1174-f9e9176dd5a08134e6840a44d228c425d77e45a0a1dc25dd8e11bd5f2fe7eb483</originalsourceid><addsrcrecordid>eNqFUM9LwzAUDqLgnF49Bzx3JmnatMcx5hx0CqLnkCWvXUeXzKRT99-bMtGjp_fe9-vBh9AtJRNKCLtXtoEJI4zTggh-hkY0YzRJRSbO0YgQzpOC8fISXYWwJYTkTJQjtF3aHhqv-tY2eKX0prWAK1DeDoCyBlfKNxGK6QcVl5Uz0AXcOzw1H8pqwPOvfeeGBGexq_G8A917pzewa7Xq8AsoPXDhGl3Uqgtw8zPH6O1h_jp7TKrnxXI2rRJNqeBJXUJJRW5MpkhBUw55wYni3DBWaM4yIwTwyClqdLxMAZSuTVazGgSseZGO0d0pd-_d-wFCL7fu4G18KVOap5zmPCujanJSae9C8FDLvW93yh8lJXLoUw59yt8-o6E8GT7bDo7_qOX0aTH_834DSwB6WA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3163416459</pqid></control><display><type>article</type><title>Integrating Machine Learning and Large Language Models to Advance Exploration of Electrochemical Reactions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zheng, Zhiling ; Florit, Federico ; Jin, Brooke ; Wu, Haoyang ; Li, Shih‐Cheng ; Nandiwale, Kakasaheb Y. ; Salazar, Chase A. ; Mustakis, Jason G. ; Green, William H. ; Jensen, Klavs F.</creator><creatorcontrib>Zheng, Zhiling ; Florit, Federico ; Jin, Brooke ; Wu, Haoyang ; Li, Shih‐Cheng ; Nandiwale, Kakasaheb Y. ; Salazar, Chase A. ; Mustakis, Jason G. ; Green, William H. ; Jensen, Klavs F.</creatorcontrib><description>Electrochemical C−H oxidation reactions offer a sustainable route to functionalize hydrocarbons, yet identifying suitable substrates and optimizing synthesis remain challenging. Here, we report an integrated approach combining machine learning and large language models to streamline the exploration of electrochemical C−H oxidation reactions. Utilizing a batch rapid screening electrochemical platform, we evaluated a wide range of reactions, initially classifying substrates by their reactivity, while LLMs text‐mined literature data to augment the training set. The resulting ML models for reactivity prediction achieved high accuracy (>90 %) and enabled virtual screening of a large set of commercially available molecules. To optimize reaction conditions for selected substrates, LLMs were prompted to generate code that iteratively improved yields. This human‐AI collaboration proved effective, efficiently identifying high‐yield conditions for 8 drug‐like substances or intermediates. Notably, we benchmarked the accuracy and reliability of 12 different LLMs–including LLaMA series, Claude series, OpenAI o1, and GPT‐4‐on code generation and function calling related to ML based on natural language prompts given by chemists to showcase potentials for accelerating research across four diverse tasks. In addition, we collected an experimental benchmark dataset comprising 1071 reaction conditions and yields for electrochemical C−H oxidation reactions.
In this study, we integrate machine learning (ML) and large language models (LLMs) to accelerate the exploration of electrochemical C−H oxidation reactions. A rapid screening platform is developed for experimental screening, while LLMs assist in literature mining and generate Python code to train ML models for reactivity prediction and synthesis optimization. This human‐AI collaboration enables synthetic chemists to streamline discovery processes and optimize reaction conditions efficiently.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202418074</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Chemical reactions ; Chemical synthesis ; Computer programming ; Electrochemistry ; hydrocarbons ; Intermediates ; Language ; Large language models ; Learning algorithms ; Machine learning ; Natural language processing ; Optimization ; Oxidation ; Screening ; Speech recognition</subject><ispartof>Angewandte Chemie, 2025-02, Vol.137 (6), p.n/a</ispartof><rights>2024 The Author(s). Angewandte Chemie published by Wiley-VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1174-f9e9176dd5a08134e6840a44d228c425d77e45a0a1dc25dd8e11bd5f2fe7eb483</cites><orcidid>0000-0002-0644-7554 ; 0000-0001-8645-0034 ; 0000-0002-2221-4865 ; 0000-0001-7192-580X ; 0009-0009-0779-0133 ; 0000-0001-6090-2258 ; 0000-0002-0754-7362 ; 0000-0002-8683-0691 ; 0000-0003-2603-9694 ; 0000-0002-6484-4953</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202418074$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202418074$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zheng, Zhiling</creatorcontrib><creatorcontrib>Florit, Federico</creatorcontrib><creatorcontrib>Jin, Brooke</creatorcontrib><creatorcontrib>Wu, Haoyang</creatorcontrib><creatorcontrib>Li, Shih‐Cheng</creatorcontrib><creatorcontrib>Nandiwale, Kakasaheb Y.</creatorcontrib><creatorcontrib>Salazar, Chase A.</creatorcontrib><creatorcontrib>Mustakis, Jason G.</creatorcontrib><creatorcontrib>Green, William H.</creatorcontrib><creatorcontrib>Jensen, Klavs F.</creatorcontrib><title>Integrating Machine Learning and Large Language Models to Advance Exploration of Electrochemical Reactions</title><title>Angewandte Chemie</title><description>Electrochemical C−H oxidation reactions offer a sustainable route to functionalize hydrocarbons, yet identifying suitable substrates and optimizing synthesis remain challenging. Here, we report an integrated approach combining machine learning and large language models to streamline the exploration of electrochemical C−H oxidation reactions. Utilizing a batch rapid screening electrochemical platform, we evaluated a wide range of reactions, initially classifying substrates by their reactivity, while LLMs text‐mined literature data to augment the training set. The resulting ML models for reactivity prediction achieved high accuracy (>90 %) and enabled virtual screening of a large set of commercially available molecules. To optimize reaction conditions for selected substrates, LLMs were prompted to generate code that iteratively improved yields. This human‐AI collaboration proved effective, efficiently identifying high‐yield conditions for 8 drug‐like substances or intermediates. Notably, we benchmarked the accuracy and reliability of 12 different LLMs–including LLaMA series, Claude series, OpenAI o1, and GPT‐4‐on code generation and function calling related to ML based on natural language prompts given by chemists to showcase potentials for accelerating research across four diverse tasks. In addition, we collected an experimental benchmark dataset comprising 1071 reaction conditions and yields for electrochemical C−H oxidation reactions.
In this study, we integrate machine learning (ML) and large language models (LLMs) to accelerate the exploration of electrochemical C−H oxidation reactions. A rapid screening platform is developed for experimental screening, while LLMs assist in literature mining and generate Python code to train ML models for reactivity prediction and synthesis optimization. This human‐AI collaboration enables synthetic chemists to streamline discovery processes and optimize reaction conditions efficiently.</description><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>Computer programming</subject><subject>Electrochemistry</subject><subject>hydrocarbons</subject><subject>Intermediates</subject><subject>Language</subject><subject>Large language models</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Natural language processing</subject><subject>Optimization</subject><subject>Oxidation</subject><subject>Screening</subject><subject>Speech recognition</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFUM9LwzAUDqLgnF49Bzx3JmnatMcx5hx0CqLnkCWvXUeXzKRT99-bMtGjp_fe9-vBh9AtJRNKCLtXtoEJI4zTggh-hkY0YzRJRSbO0YgQzpOC8fISXYWwJYTkTJQjtF3aHhqv-tY2eKX0prWAK1DeDoCyBlfKNxGK6QcVl5Uz0AXcOzw1H8pqwPOvfeeGBGexq_G8A917pzewa7Xq8AsoPXDhGl3Uqgtw8zPH6O1h_jp7TKrnxXI2rRJNqeBJXUJJRW5MpkhBUw55wYni3DBWaM4yIwTwyClqdLxMAZSuTVazGgSseZGO0d0pd-_d-wFCL7fu4G18KVOap5zmPCujanJSae9C8FDLvW93yh8lJXLoUw59yt8-o6E8GT7bDo7_qOX0aTH_834DSwB6WA</recordid><startdate>20250203</startdate><enddate>20250203</enddate><creator>Zheng, Zhiling</creator><creator>Florit, Federico</creator><creator>Jin, Brooke</creator><creator>Wu, Haoyang</creator><creator>Li, Shih‐Cheng</creator><creator>Nandiwale, Kakasaheb Y.</creator><creator>Salazar, Chase A.</creator><creator>Mustakis, Jason G.</creator><creator>Green, William H.</creator><creator>Jensen, Klavs F.</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0644-7554</orcidid><orcidid>https://orcid.org/0000-0001-8645-0034</orcidid><orcidid>https://orcid.org/0000-0002-2221-4865</orcidid><orcidid>https://orcid.org/0000-0001-7192-580X</orcidid><orcidid>https://orcid.org/0009-0009-0779-0133</orcidid><orcidid>https://orcid.org/0000-0001-6090-2258</orcidid><orcidid>https://orcid.org/0000-0002-0754-7362</orcidid><orcidid>https://orcid.org/0000-0002-8683-0691</orcidid><orcidid>https://orcid.org/0000-0003-2603-9694</orcidid><orcidid>https://orcid.org/0000-0002-6484-4953</orcidid></search><sort><creationdate>20250203</creationdate><title>Integrating Machine Learning and Large Language Models to Advance Exploration of Electrochemical Reactions</title><author>Zheng, Zhiling ; Florit, Federico ; Jin, Brooke ; Wu, Haoyang ; Li, Shih‐Cheng ; Nandiwale, Kakasaheb Y. ; Salazar, Chase A. ; Mustakis, Jason G. ; Green, William H. ; Jensen, Klavs F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1174-f9e9176dd5a08134e6840a44d228c425d77e45a0a1dc25dd8e11bd5f2fe7eb483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>Computer programming</topic><topic>Electrochemistry</topic><topic>hydrocarbons</topic><topic>Intermediates</topic><topic>Language</topic><topic>Large language models</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Natural language processing</topic><topic>Optimization</topic><topic>Oxidation</topic><topic>Screening</topic><topic>Speech recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Zhiling</creatorcontrib><creatorcontrib>Florit, Federico</creatorcontrib><creatorcontrib>Jin, Brooke</creatorcontrib><creatorcontrib>Wu, Haoyang</creatorcontrib><creatorcontrib>Li, Shih‐Cheng</creatorcontrib><creatorcontrib>Nandiwale, Kakasaheb Y.</creatorcontrib><creatorcontrib>Salazar, Chase A.</creatorcontrib><creatorcontrib>Mustakis, Jason G.</creatorcontrib><creatorcontrib>Green, William H.</creatorcontrib><creatorcontrib>Jensen, Klavs F.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Zhiling</au><au>Florit, Federico</au><au>Jin, Brooke</au><au>Wu, Haoyang</au><au>Li, Shih‐Cheng</au><au>Nandiwale, Kakasaheb Y.</au><au>Salazar, Chase A.</au><au>Mustakis, Jason G.</au><au>Green, William H.</au><au>Jensen, Klavs F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating Machine Learning and Large Language Models to Advance Exploration of Electrochemical Reactions</atitle><jtitle>Angewandte Chemie</jtitle><date>2025-02-03</date><risdate>2025</risdate><volume>137</volume><issue>6</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Electrochemical C−H oxidation reactions offer a sustainable route to functionalize hydrocarbons, yet identifying suitable substrates and optimizing synthesis remain challenging. Here, we report an integrated approach combining machine learning and large language models to streamline the exploration of electrochemical C−H oxidation reactions. Utilizing a batch rapid screening electrochemical platform, we evaluated a wide range of reactions, initially classifying substrates by their reactivity, while LLMs text‐mined literature data to augment the training set. The resulting ML models for reactivity prediction achieved high accuracy (>90 %) and enabled virtual screening of a large set of commercially available molecules. To optimize reaction conditions for selected substrates, LLMs were prompted to generate code that iteratively improved yields. This human‐AI collaboration proved effective, efficiently identifying high‐yield conditions for 8 drug‐like substances or intermediates. Notably, we benchmarked the accuracy and reliability of 12 different LLMs–including LLaMA series, Claude series, OpenAI o1, and GPT‐4‐on code generation and function calling related to ML based on natural language prompts given by chemists to showcase potentials for accelerating research across four diverse tasks. In addition, we collected an experimental benchmark dataset comprising 1071 reaction conditions and yields for electrochemical C−H oxidation reactions.
In this study, we integrate machine learning (ML) and large language models (LLMs) to accelerate the exploration of electrochemical C−H oxidation reactions. A rapid screening platform is developed for experimental screening, while LLMs assist in literature mining and generate Python code to train ML models for reactivity prediction and synthesis optimization. This human‐AI collaboration enables synthetic chemists to streamline discovery processes and optimize reaction conditions efficiently.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202418074</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0644-7554</orcidid><orcidid>https://orcid.org/0000-0001-8645-0034</orcidid><orcidid>https://orcid.org/0000-0002-2221-4865</orcidid><orcidid>https://orcid.org/0000-0001-7192-580X</orcidid><orcidid>https://orcid.org/0009-0009-0779-0133</orcidid><orcidid>https://orcid.org/0000-0001-6090-2258</orcidid><orcidid>https://orcid.org/0000-0002-0754-7362</orcidid><orcidid>https://orcid.org/0000-0002-8683-0691</orcidid><orcidid>https://orcid.org/0000-0003-2603-9694</orcidid><orcidid>https://orcid.org/0000-0002-6484-4953</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2025-02, Vol.137 (6), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_3163416459 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Chemical reactions Chemical synthesis Computer programming Electrochemistry hydrocarbons Intermediates Language Large language models Learning algorithms Machine learning Natural language processing Optimization Oxidation Screening Speech recognition |
title | Integrating Machine Learning and Large Language Models to Advance Exploration of Electrochemical Reactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A04%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20Machine%20Learning%20and%20Large%20Language%20Models%20to%20Advance%20Exploration%20of%20Electrochemical%20Reactions&rft.jtitle=Angewandte%20Chemie&rft.au=Zheng,%20Zhiling&rft.date=2025-02-03&rft.volume=137&rft.issue=6&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202418074&rft_dat=%3Cproquest_cross%3E3163416459%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3163416459&rft_id=info:pmid/&rfr_iscdi=true |