3D Coaxial Printing of Small‐Diameter Artificial Arteries

As a treatment for the widely spread cardiovascular diseases (CVD), bypass vascular grafts have room for improvement in terms of mechanical property match with native arteries. A 3D‐printed nozzle is presented, featuring unique internal structures, to extrude artificial vascular grafts with a flower...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small structures 2025-02, Vol.6 (2), p.n/a
Hauptverfasser: Zhu, Yuxiang, Liu, Siying, Mei, Xuan, Lin, Zeng, Pulido, Tiffany V., Hou, Jixin, Remani, Srikar Anudeep, Patil, Dhanush, Sobczak, Martin Taylor, Ramanathan, Arunachalam, Thummalapalli, Sri Vaishnavi, Chambers, Lindsay B., Yu, Churan, Guo, Shenghan, Zhao, Yiping, Liu, Yang, Wang, Xianqiao, Lancaster, Jessica N., Zhang, Yu Shrike, Chen, Xiangfan, Song, Kenan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Small structures
container_volume 6
creator Zhu, Yuxiang
Liu, Siying
Mei, Xuan
Lin, Zeng
Pulido, Tiffany V.
Hou, Jixin
Remani, Srikar Anudeep
Patil, Dhanush
Sobczak, Martin Taylor
Ramanathan, Arunachalam
Thummalapalli, Sri Vaishnavi
Chambers, Lindsay B.
Yu, Churan
Guo, Shenghan
Zhao, Yiping
Liu, Yang
Wang, Xianqiao
Lancaster, Jessica N.
Zhang, Yu Shrike
Chen, Xiangfan
Song, Kenan
description As a treatment for the widely spread cardiovascular diseases (CVD), bypass vascular grafts have room for improvement in terms of mechanical property match with native arteries. A 3D‐printed nozzle is presented, featuring unique internal structures, to extrude artificial vascular grafts with a flower‐mimicking geometry. The multilayer‐structured graft wall allows the inner and outer layers to interfere sequentially during lateral expansion, replicating the nonlinear elasticity of native vessels. Both experiment and simulation results verify the necessity and benefit of the flower‐mimicking structure in obtaining the self‐toughening behavior. The gelation study of natural polymers and the utilization of sacrificial phase enables the smooth extrusion of the multiphase conduit, where computer‐assisted image analysis is employed to quantify manufacturing fidelity. The cell viability tests demonstrate the cytocompatibility of the gelatin methacryloyl (GelMA)/sodium alginate grafts, suggesting potential for further clinical research with further developments. This study presents a feasible approach for fabricating bypass vascular grafts and inspires future treatments for CVD. This study introduces a novel 3D‐printed nozzle for manufacturing vascular grafts with a flower‐mimicking geometry. Combining experimental and simulation approaches, the research demonstrates the nozzle's self‐toughening behavior and cytocompatibility. The use of natural polymers and sacrificial phases enhances extrusion and manufacturing fidelity, indicating significant potential for advanced treatments in cardiovascular diseases.
doi_str_mv 10.1002/sstr.202400323
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3163119055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3163119055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2423-c5b0fd96356ccedbb15f0c346142e9842b15cd475945c139f5867351dd7a4f193</originalsourceid><addsrcrecordid>eNqFkM1Kw0AURgdRsNRuXQdcJ86dv2RwVVKtQkGxdT1MJjMyJW3qTIp25yP4jD6JKRV15-p-XM65Fz6EzgFngDG5jLELGcGEYUwJPUIDIooiZViQ4z_5FI1iXOJe4AC5zAfoik6SstVvXjfJQ_Drzq-fk9Yl85Vums_3j4nXK9vZkIxD5503e66PNngbz9CJ0020o-85RE8314vyNp3dT-_K8Sw1hBGaGl5hV0tBuTDG1lUF3GFDmQBGrCwY6RemZjmXjBug0vFC5JRDXeeaOZB0iC4Odzehfdna2Klluw3r_qWiICiAxJz3VHagTGhjDNapTfArHXYKsNp3pPYdqZ-OekEehFff2N0_tJrPF4-_7hfDImoF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3163119055</pqid></control><display><type>article</type><title>3D Coaxial Printing of Small‐Diameter Artificial Arteries</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zhu, Yuxiang ; Liu, Siying ; Mei, Xuan ; Lin, Zeng ; Pulido, Tiffany V. ; Hou, Jixin ; Remani, Srikar Anudeep ; Patil, Dhanush ; Sobczak, Martin Taylor ; Ramanathan, Arunachalam ; Thummalapalli, Sri Vaishnavi ; Chambers, Lindsay B. ; Yu, Churan ; Guo, Shenghan ; Zhao, Yiping ; Liu, Yang ; Wang, Xianqiao ; Lancaster, Jessica N. ; Zhang, Yu Shrike ; Chen, Xiangfan ; Song, Kenan</creator><creatorcontrib>Zhu, Yuxiang ; Liu, Siying ; Mei, Xuan ; Lin, Zeng ; Pulido, Tiffany V. ; Hou, Jixin ; Remani, Srikar Anudeep ; Patil, Dhanush ; Sobczak, Martin Taylor ; Ramanathan, Arunachalam ; Thummalapalli, Sri Vaishnavi ; Chambers, Lindsay B. ; Yu, Churan ; Guo, Shenghan ; Zhao, Yiping ; Liu, Yang ; Wang, Xianqiao ; Lancaster, Jessica N. ; Zhang, Yu Shrike ; Chen, Xiangfan ; Song, Kenan</creatorcontrib><description>As a treatment for the widely spread cardiovascular diseases (CVD), bypass vascular grafts have room for improvement in terms of mechanical property match with native arteries. A 3D‐printed nozzle is presented, featuring unique internal structures, to extrude artificial vascular grafts with a flower‐mimicking geometry. The multilayer‐structured graft wall allows the inner and outer layers to interfere sequentially during lateral expansion, replicating the nonlinear elasticity of native vessels. Both experiment and simulation results verify the necessity and benefit of the flower‐mimicking structure in obtaining the self‐toughening behavior. The gelation study of natural polymers and the utilization of sacrificial phase enables the smooth extrusion of the multiphase conduit, where computer‐assisted image analysis is employed to quantify manufacturing fidelity. The cell viability tests demonstrate the cytocompatibility of the gelatin methacryloyl (GelMA)/sodium alginate grafts, suggesting potential for further clinical research with further developments. This study presents a feasible approach for fabricating bypass vascular grafts and inspires future treatments for CVD. This study introduces a novel 3D‐printed nozzle for manufacturing vascular grafts with a flower‐mimicking geometry. Combining experimental and simulation approaches, the research demonstrates the nozzle's self‐toughening behavior and cytocompatibility. The use of natural polymers and sacrificial phases enhances extrusion and manufacturing fidelity, indicating significant potential for advanced treatments in cardiovascular diseases.</description><identifier>ISSN: 2688-4062</identifier><identifier>EISSN: 2688-4062</identifier><identifier>DOI: 10.1002/sstr.202400323</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>3D printing ; Biocompatibility ; biomaterials ; cardiovascular diseases ; coaxial extrusions ; Gelatin ; Grafting ; Image analysis ; Multilayers ; Natural polymers ; nonlinear elasticities ; Sodium alginate ; Three dimensional flow</subject><ispartof>Small structures, 2025-02, Vol.6 (2), p.n/a</ispartof><rights>2024 The Author(s). Small Structures published by Wiley‐VCH GmbH</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2423-c5b0fd96356ccedbb15f0c346142e9842b15cd475945c139f5867351dd7a4f193</cites><orcidid>0000-0002-0447-2449 ; 0000-0002-3710-4159 ; 0000-0002-0045-0808 ; 0000-0002-1190-0800 ; 0000-0001-7399-5588 ; 0000-0003-2461-3015 ; 0000-0003-4683-5663 ; 0000-0002-8747-4975 ; 0000-0002-5627-7530 ; 0000-0002-2159-6128 ; 0009-0002-5903-6131 ; 0000-0003-0398-9988 ; 0000-0001-5688-5600 ; 0000-0003-0093-3997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsstr.202400323$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsstr.202400323$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,1411,11541,27901,27902,45550,45551,46027,46451</link.rule.ids></links><search><creatorcontrib>Zhu, Yuxiang</creatorcontrib><creatorcontrib>Liu, Siying</creatorcontrib><creatorcontrib>Mei, Xuan</creatorcontrib><creatorcontrib>Lin, Zeng</creatorcontrib><creatorcontrib>Pulido, Tiffany V.</creatorcontrib><creatorcontrib>Hou, Jixin</creatorcontrib><creatorcontrib>Remani, Srikar Anudeep</creatorcontrib><creatorcontrib>Patil, Dhanush</creatorcontrib><creatorcontrib>Sobczak, Martin Taylor</creatorcontrib><creatorcontrib>Ramanathan, Arunachalam</creatorcontrib><creatorcontrib>Thummalapalli, Sri Vaishnavi</creatorcontrib><creatorcontrib>Chambers, Lindsay B.</creatorcontrib><creatorcontrib>Yu, Churan</creatorcontrib><creatorcontrib>Guo, Shenghan</creatorcontrib><creatorcontrib>Zhao, Yiping</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Wang, Xianqiao</creatorcontrib><creatorcontrib>Lancaster, Jessica N.</creatorcontrib><creatorcontrib>Zhang, Yu Shrike</creatorcontrib><creatorcontrib>Chen, Xiangfan</creatorcontrib><creatorcontrib>Song, Kenan</creatorcontrib><title>3D Coaxial Printing of Small‐Diameter Artificial Arteries</title><title>Small structures</title><description>As a treatment for the widely spread cardiovascular diseases (CVD), bypass vascular grafts have room for improvement in terms of mechanical property match with native arteries. A 3D‐printed nozzle is presented, featuring unique internal structures, to extrude artificial vascular grafts with a flower‐mimicking geometry. The multilayer‐structured graft wall allows the inner and outer layers to interfere sequentially during lateral expansion, replicating the nonlinear elasticity of native vessels. Both experiment and simulation results verify the necessity and benefit of the flower‐mimicking structure in obtaining the self‐toughening behavior. The gelation study of natural polymers and the utilization of sacrificial phase enables the smooth extrusion of the multiphase conduit, where computer‐assisted image analysis is employed to quantify manufacturing fidelity. The cell viability tests demonstrate the cytocompatibility of the gelatin methacryloyl (GelMA)/sodium alginate grafts, suggesting potential for further clinical research with further developments. This study presents a feasible approach for fabricating bypass vascular grafts and inspires future treatments for CVD. This study introduces a novel 3D‐printed nozzle for manufacturing vascular grafts with a flower‐mimicking geometry. Combining experimental and simulation approaches, the research demonstrates the nozzle's self‐toughening behavior and cytocompatibility. The use of natural polymers and sacrificial phases enhances extrusion and manufacturing fidelity, indicating significant potential for advanced treatments in cardiovascular diseases.</description><subject>3D printing</subject><subject>Biocompatibility</subject><subject>biomaterials</subject><subject>cardiovascular diseases</subject><subject>coaxial extrusions</subject><subject>Gelatin</subject><subject>Grafting</subject><subject>Image analysis</subject><subject>Multilayers</subject><subject>Natural polymers</subject><subject>nonlinear elasticities</subject><subject>Sodium alginate</subject><subject>Three dimensional flow</subject><issn>2688-4062</issn><issn>2688-4062</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkM1Kw0AURgdRsNRuXQdcJ86dv2RwVVKtQkGxdT1MJjMyJW3qTIp25yP4jD6JKRV15-p-XM65Fz6EzgFngDG5jLELGcGEYUwJPUIDIooiZViQ4z_5FI1iXOJe4AC5zAfoik6SstVvXjfJQ_Drzq-fk9Yl85Vums_3j4nXK9vZkIxD5503e66PNngbz9CJ0020o-85RE8314vyNp3dT-_K8Sw1hBGaGl5hV0tBuTDG1lUF3GFDmQBGrCwY6RemZjmXjBug0vFC5JRDXeeaOZB0iC4Odzehfdna2Klluw3r_qWiICiAxJz3VHagTGhjDNapTfArHXYKsNp3pPYdqZ-OekEehFff2N0_tJrPF4-_7hfDImoF</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Zhu, Yuxiang</creator><creator>Liu, Siying</creator><creator>Mei, Xuan</creator><creator>Lin, Zeng</creator><creator>Pulido, Tiffany V.</creator><creator>Hou, Jixin</creator><creator>Remani, Srikar Anudeep</creator><creator>Patil, Dhanush</creator><creator>Sobczak, Martin Taylor</creator><creator>Ramanathan, Arunachalam</creator><creator>Thummalapalli, Sri Vaishnavi</creator><creator>Chambers, Lindsay B.</creator><creator>Yu, Churan</creator><creator>Guo, Shenghan</creator><creator>Zhao, Yiping</creator><creator>Liu, Yang</creator><creator>Wang, Xianqiao</creator><creator>Lancaster, Jessica N.</creator><creator>Zhang, Yu Shrike</creator><creator>Chen, Xiangfan</creator><creator>Song, Kenan</creator><general>John Wiley &amp; Sons, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0447-2449</orcidid><orcidid>https://orcid.org/0000-0002-3710-4159</orcidid><orcidid>https://orcid.org/0000-0002-0045-0808</orcidid><orcidid>https://orcid.org/0000-0002-1190-0800</orcidid><orcidid>https://orcid.org/0000-0001-7399-5588</orcidid><orcidid>https://orcid.org/0000-0003-2461-3015</orcidid><orcidid>https://orcid.org/0000-0003-4683-5663</orcidid><orcidid>https://orcid.org/0000-0002-8747-4975</orcidid><orcidid>https://orcid.org/0000-0002-5627-7530</orcidid><orcidid>https://orcid.org/0000-0002-2159-6128</orcidid><orcidid>https://orcid.org/0009-0002-5903-6131</orcidid><orcidid>https://orcid.org/0000-0003-0398-9988</orcidid><orcidid>https://orcid.org/0000-0001-5688-5600</orcidid><orcidid>https://orcid.org/0000-0003-0093-3997</orcidid></search><sort><creationdate>202502</creationdate><title>3D Coaxial Printing of Small‐Diameter Artificial Arteries</title><author>Zhu, Yuxiang ; Liu, Siying ; Mei, Xuan ; Lin, Zeng ; Pulido, Tiffany V. ; Hou, Jixin ; Remani, Srikar Anudeep ; Patil, Dhanush ; Sobczak, Martin Taylor ; Ramanathan, Arunachalam ; Thummalapalli, Sri Vaishnavi ; Chambers, Lindsay B. ; Yu, Churan ; Guo, Shenghan ; Zhao, Yiping ; Liu, Yang ; Wang, Xianqiao ; Lancaster, Jessica N. ; Zhang, Yu Shrike ; Chen, Xiangfan ; Song, Kenan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2423-c5b0fd96356ccedbb15f0c346142e9842b15cd475945c139f5867351dd7a4f193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>3D printing</topic><topic>Biocompatibility</topic><topic>biomaterials</topic><topic>cardiovascular diseases</topic><topic>coaxial extrusions</topic><topic>Gelatin</topic><topic>Grafting</topic><topic>Image analysis</topic><topic>Multilayers</topic><topic>Natural polymers</topic><topic>nonlinear elasticities</topic><topic>Sodium alginate</topic><topic>Three dimensional flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yuxiang</creatorcontrib><creatorcontrib>Liu, Siying</creatorcontrib><creatorcontrib>Mei, Xuan</creatorcontrib><creatorcontrib>Lin, Zeng</creatorcontrib><creatorcontrib>Pulido, Tiffany V.</creatorcontrib><creatorcontrib>Hou, Jixin</creatorcontrib><creatorcontrib>Remani, Srikar Anudeep</creatorcontrib><creatorcontrib>Patil, Dhanush</creatorcontrib><creatorcontrib>Sobczak, Martin Taylor</creatorcontrib><creatorcontrib>Ramanathan, Arunachalam</creatorcontrib><creatorcontrib>Thummalapalli, Sri Vaishnavi</creatorcontrib><creatorcontrib>Chambers, Lindsay B.</creatorcontrib><creatorcontrib>Yu, Churan</creatorcontrib><creatorcontrib>Guo, Shenghan</creatorcontrib><creatorcontrib>Zhao, Yiping</creatorcontrib><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Wang, Xianqiao</creatorcontrib><creatorcontrib>Lancaster, Jessica N.</creatorcontrib><creatorcontrib>Zhang, Yu Shrike</creatorcontrib><creatorcontrib>Chen, Xiangfan</creatorcontrib><creatorcontrib>Song, Kenan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Small structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Yuxiang</au><au>Liu, Siying</au><au>Mei, Xuan</au><au>Lin, Zeng</au><au>Pulido, Tiffany V.</au><au>Hou, Jixin</au><au>Remani, Srikar Anudeep</au><au>Patil, Dhanush</au><au>Sobczak, Martin Taylor</au><au>Ramanathan, Arunachalam</au><au>Thummalapalli, Sri Vaishnavi</au><au>Chambers, Lindsay B.</au><au>Yu, Churan</au><au>Guo, Shenghan</au><au>Zhao, Yiping</au><au>Liu, Yang</au><au>Wang, Xianqiao</au><au>Lancaster, Jessica N.</au><au>Zhang, Yu Shrike</au><au>Chen, Xiangfan</au><au>Song, Kenan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Coaxial Printing of Small‐Diameter Artificial Arteries</atitle><jtitle>Small structures</jtitle><date>2025-02</date><risdate>2025</risdate><volume>6</volume><issue>2</issue><epage>n/a</epage><issn>2688-4062</issn><eissn>2688-4062</eissn><abstract>As a treatment for the widely spread cardiovascular diseases (CVD), bypass vascular grafts have room for improvement in terms of mechanical property match with native arteries. A 3D‐printed nozzle is presented, featuring unique internal structures, to extrude artificial vascular grafts with a flower‐mimicking geometry. The multilayer‐structured graft wall allows the inner and outer layers to interfere sequentially during lateral expansion, replicating the nonlinear elasticity of native vessels. Both experiment and simulation results verify the necessity and benefit of the flower‐mimicking structure in obtaining the self‐toughening behavior. The gelation study of natural polymers and the utilization of sacrificial phase enables the smooth extrusion of the multiphase conduit, where computer‐assisted image analysis is employed to quantify manufacturing fidelity. The cell viability tests demonstrate the cytocompatibility of the gelatin methacryloyl (GelMA)/sodium alginate grafts, suggesting potential for further clinical research with further developments. This study presents a feasible approach for fabricating bypass vascular grafts and inspires future treatments for CVD. This study introduces a novel 3D‐printed nozzle for manufacturing vascular grafts with a flower‐mimicking geometry. Combining experimental and simulation approaches, the research demonstrates the nozzle's self‐toughening behavior and cytocompatibility. The use of natural polymers and sacrificial phases enhances extrusion and manufacturing fidelity, indicating significant potential for advanced treatments in cardiovascular diseases.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/sstr.202400323</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0447-2449</orcidid><orcidid>https://orcid.org/0000-0002-3710-4159</orcidid><orcidid>https://orcid.org/0000-0002-0045-0808</orcidid><orcidid>https://orcid.org/0000-0002-1190-0800</orcidid><orcidid>https://orcid.org/0000-0001-7399-5588</orcidid><orcidid>https://orcid.org/0000-0003-2461-3015</orcidid><orcidid>https://orcid.org/0000-0003-4683-5663</orcidid><orcidid>https://orcid.org/0000-0002-8747-4975</orcidid><orcidid>https://orcid.org/0000-0002-5627-7530</orcidid><orcidid>https://orcid.org/0000-0002-2159-6128</orcidid><orcidid>https://orcid.org/0009-0002-5903-6131</orcidid><orcidid>https://orcid.org/0000-0003-0398-9988</orcidid><orcidid>https://orcid.org/0000-0001-5688-5600</orcidid><orcidid>https://orcid.org/0000-0003-0093-3997</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2688-4062
ispartof Small structures, 2025-02, Vol.6 (2), p.n/a
issn 2688-4062
2688-4062
language eng
recordid cdi_proquest_journals_3163119055
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 3D printing
Biocompatibility
biomaterials
cardiovascular diseases
coaxial extrusions
Gelatin
Grafting
Image analysis
Multilayers
Natural polymers
nonlinear elasticities
Sodium alginate
Three dimensional flow
title 3D Coaxial Printing of Small‐Diameter Artificial Arteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T07%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Coaxial%20Printing%20of%20Small%E2%80%90Diameter%20Artificial%20Arteries&rft.jtitle=Small%20structures&rft.au=Zhu,%20Yuxiang&rft.date=2025-02&rft.volume=6&rft.issue=2&rft.epage=n/a&rft.issn=2688-4062&rft.eissn=2688-4062&rft_id=info:doi/10.1002/sstr.202400323&rft_dat=%3Cproquest_cross%3E3163119055%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3163119055&rft_id=info:pmid/&rfr_iscdi=true