Optimizing water‐nitrogen regulation for enhanced carbon absorption and reduced greenhouse gas emissions in greenhouse tomato cultivation

To study the impact of different water‐nitrogen regulation modes on the carbon cycle of greenhouse tomatoes and determine optimal irrigation and nitrogen application levels to enhance carbon absorption and minimize greenhouse gas emissions. This study employed three irrigation levels (100%, 80%, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental progress 2025-01, Vol.44 (1), p.n/a
Hauptverfasser: Zhao, Wenju, Yu, Haiying, Ding, Lei, Wu, Keqian, Yang, Xiai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Environmental progress
container_volume 44
creator Zhao, Wenju
Yu, Haiying
Ding, Lei
Wu, Keqian
Yang, Xiai
description To study the impact of different water‐nitrogen regulation modes on the carbon cycle of greenhouse tomatoes and determine optimal irrigation and nitrogen application levels to enhance carbon absorption and minimize greenhouse gas emissions. This study employed three irrigation levels (100%, 80%, and 60% of ET0) and three nitrogen application levels (240, 192, and 144 kg·ha−1), along with a control group (W1N1, i.e., 100% ET0‐240 kg·ha−1). Gas‐chromatography methods were used to monitor CH4 and soil CO2 emissions, while assessing dry matter, carbon content, and carbon fixation capacity of tomato organs throughout the growth period. Additionally, a system for evaluating the net ecosystem carbon budget of facility tomatoes was developed based on net primary productivity. Results indicated reduced CH4 and soil CO2 emissions with decreased irrigation and nitrogen application. Dry matter, carbon content, and carbon fixation of tomato organs initially increased with reduced nitrogen and irrigation but then declined. The W2N2 (80% ET0‐192 kg·ha−1) treatment showed maximal values for dry matter, carbon content, carbon fixation, net primary productivity (NPP), and gross primary productivity (GPP). Findings suggest a positive net ecosystem carbon budget under reduced water and nitrogen conditions, indicating carbon absorption. Specifically, the W2N2 treatment outperformed others in net carbon absorption, highlighting its potential as an effective mode for enhancing carbon sequestration in the region.
doi_str_mv 10.1002/ep.14524
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3160237839</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3160237839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1844-2354f73b53998359293d05d99e7e3fd554ced9c5cb37b887b96a835f9c671c993</originalsourceid><addsrcrecordid>eNp10M9PwyAUB3BiNHFOE_8EEi9eOmmBthzNMn8kS-ZBzw2ltLK0UIG6zJN3L_6N_iWy1Rgvnnjh-8l78AA4j9EsRii5kv0sJjQhB2ASM0KijFB0-FuT5BicOLdGKMWEsQn4WPVedepN6QZuuJf26_1TK29NIzW0shla7pXRsDYWSv3MtZAVFNyW4Y6Xzth-H3NdBV0Nu7SxMkgzOAkb7qDslHPBOKj038ybjnsDxdB69bofcgqOat46efZzTsHTzeJxfhctV7f38-tlJOI8_CLBlNQZLilmLMeUJQxXiFaMyUziuqKUhFcwQUWJszLPs5KlPLiaiTSLBWN4Ci7Gvr01L4N0vlibweowssBxihKc5XinLkclrHHOyrroreq43RYxKnarLmRf7FcdaDTSjWrl9l9XLB5G_w2V0YMn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3160237839</pqid></control><display><type>article</type><title>Optimizing water‐nitrogen regulation for enhanced carbon absorption and reduced greenhouse gas emissions in greenhouse tomato cultivation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhao, Wenju ; Yu, Haiying ; Ding, Lei ; Wu, Keqian ; Yang, Xiai</creator><creatorcontrib>Zhao, Wenju ; Yu, Haiying ; Ding, Lei ; Wu, Keqian ; Yang, Xiai</creatorcontrib><description>To study the impact of different water‐nitrogen regulation modes on the carbon cycle of greenhouse tomatoes and determine optimal irrigation and nitrogen application levels to enhance carbon absorption and minimize greenhouse gas emissions. This study employed three irrigation levels (100%, 80%, and 60% of ET0) and three nitrogen application levels (240, 192, and 144 kg·ha−1), along with a control group (W1N1, i.e., 100% ET0‐240 kg·ha−1). Gas‐chromatography methods were used to monitor CH4 and soil CO2 emissions, while assessing dry matter, carbon content, and carbon fixation capacity of tomato organs throughout the growth period. Additionally, a system for evaluating the net ecosystem carbon budget of facility tomatoes was developed based on net primary productivity. Results indicated reduced CH4 and soil CO2 emissions with decreased irrigation and nitrogen application. Dry matter, carbon content, and carbon fixation of tomato organs initially increased with reduced nitrogen and irrigation but then declined. The W2N2 (80% ET0‐192 kg·ha−1) treatment showed maximal values for dry matter, carbon content, carbon fixation, net primary productivity (NPP), and gross primary productivity (GPP). Findings suggest a positive net ecosystem carbon budget under reduced water and nitrogen conditions, indicating carbon absorption. Specifically, the W2N2 treatment outperformed others in net carbon absorption, highlighting its potential as an effective mode for enhancing carbon sequestration in the region.</description><identifier>ISSN: 1944-7442</identifier><identifier>EISSN: 1944-7450</identifier><identifier>DOI: 10.1002/ep.14524</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Absorption ; Carbon ; carbon budget ; Carbon content ; Carbon cycle ; Carbon dioxide ; Carbon dioxide emissions ; Carbon fixation ; Carbon sequestration ; Cultivation ; Dry matter ; Emissions ; Emissions control ; farmland net ecosystem ; Fixation ; Fruit cultivation ; Greenhouse gases ; greenhouse tomato ; Irrigation ; Methane ; Net Primary Productivity ; Nitrogen ; Optimization ; Organs ; Productivity ; Tomatoes ; water saving and nitrogen reduction</subject><ispartof>Environmental progress, 2025-01, Vol.44 (1), p.n/a</ispartof><rights>2024 American Institute of Chemical Engineers.</rights><rights>2025 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1844-2354f73b53998359293d05d99e7e3fd554ced9c5cb37b887b96a835f9c671c993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fep.14524$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fep.14524$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Zhao, Wenju</creatorcontrib><creatorcontrib>Yu, Haiying</creatorcontrib><creatorcontrib>Ding, Lei</creatorcontrib><creatorcontrib>Wu, Keqian</creatorcontrib><creatorcontrib>Yang, Xiai</creatorcontrib><title>Optimizing water‐nitrogen regulation for enhanced carbon absorption and reduced greenhouse gas emissions in greenhouse tomato cultivation</title><title>Environmental progress</title><description>To study the impact of different water‐nitrogen regulation modes on the carbon cycle of greenhouse tomatoes and determine optimal irrigation and nitrogen application levels to enhance carbon absorption and minimize greenhouse gas emissions. This study employed three irrigation levels (100%, 80%, and 60% of ET0) and three nitrogen application levels (240, 192, and 144 kg·ha−1), along with a control group (W1N1, i.e., 100% ET0‐240 kg·ha−1). Gas‐chromatography methods were used to monitor CH4 and soil CO2 emissions, while assessing dry matter, carbon content, and carbon fixation capacity of tomato organs throughout the growth period. Additionally, a system for evaluating the net ecosystem carbon budget of facility tomatoes was developed based on net primary productivity. Results indicated reduced CH4 and soil CO2 emissions with decreased irrigation and nitrogen application. Dry matter, carbon content, and carbon fixation of tomato organs initially increased with reduced nitrogen and irrigation but then declined. The W2N2 (80% ET0‐192 kg·ha−1) treatment showed maximal values for dry matter, carbon content, carbon fixation, net primary productivity (NPP), and gross primary productivity (GPP). Findings suggest a positive net ecosystem carbon budget under reduced water and nitrogen conditions, indicating carbon absorption. Specifically, the W2N2 treatment outperformed others in net carbon absorption, highlighting its potential as an effective mode for enhancing carbon sequestration in the region.</description><subject>Absorption</subject><subject>Carbon</subject><subject>carbon budget</subject><subject>Carbon content</subject><subject>Carbon cycle</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Carbon fixation</subject><subject>Carbon sequestration</subject><subject>Cultivation</subject><subject>Dry matter</subject><subject>Emissions</subject><subject>Emissions control</subject><subject>farmland net ecosystem</subject><subject>Fixation</subject><subject>Fruit cultivation</subject><subject>Greenhouse gases</subject><subject>greenhouse tomato</subject><subject>Irrigation</subject><subject>Methane</subject><subject>Net Primary Productivity</subject><subject>Nitrogen</subject><subject>Optimization</subject><subject>Organs</subject><subject>Productivity</subject><subject>Tomatoes</subject><subject>water saving and nitrogen reduction</subject><issn>1944-7442</issn><issn>1944-7450</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp10M9PwyAUB3BiNHFOE_8EEi9eOmmBthzNMn8kS-ZBzw2ltLK0UIG6zJN3L_6N_iWy1Rgvnnjh-8l78AA4j9EsRii5kv0sJjQhB2ASM0KijFB0-FuT5BicOLdGKMWEsQn4WPVedepN6QZuuJf26_1TK29NIzW0shla7pXRsDYWSv3MtZAVFNyW4Y6Xzth-H3NdBV0Nu7SxMkgzOAkb7qDslHPBOKj038ybjnsDxdB69bofcgqOat46efZzTsHTzeJxfhctV7f38-tlJOI8_CLBlNQZLilmLMeUJQxXiFaMyUziuqKUhFcwQUWJszLPs5KlPLiaiTSLBWN4Ci7Gvr01L4N0vlibweowssBxihKc5XinLkclrHHOyrroreq43RYxKnarLmRf7FcdaDTSjWrl9l9XLB5G_w2V0YMn</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Zhao, Wenju</creator><creator>Yu, Haiying</creator><creator>Ding, Lei</creator><creator>Wu, Keqian</creator><creator>Yang, Xiai</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons, Limited</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7U6</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>202501</creationdate><title>Optimizing water‐nitrogen regulation for enhanced carbon absorption and reduced greenhouse gas emissions in greenhouse tomato cultivation</title><author>Zhao, Wenju ; Yu, Haiying ; Ding, Lei ; Wu, Keqian ; Yang, Xiai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1844-2354f73b53998359293d05d99e7e3fd554ced9c5cb37b887b96a835f9c671c993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Absorption</topic><topic>Carbon</topic><topic>carbon budget</topic><topic>Carbon content</topic><topic>Carbon cycle</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Carbon fixation</topic><topic>Carbon sequestration</topic><topic>Cultivation</topic><topic>Dry matter</topic><topic>Emissions</topic><topic>Emissions control</topic><topic>farmland net ecosystem</topic><topic>Fixation</topic><topic>Fruit cultivation</topic><topic>Greenhouse gases</topic><topic>greenhouse tomato</topic><topic>Irrigation</topic><topic>Methane</topic><topic>Net Primary Productivity</topic><topic>Nitrogen</topic><topic>Optimization</topic><topic>Organs</topic><topic>Productivity</topic><topic>Tomatoes</topic><topic>water saving and nitrogen reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Wenju</creatorcontrib><creatorcontrib>Yu, Haiying</creatorcontrib><creatorcontrib>Ding, Lei</creatorcontrib><creatorcontrib>Wu, Keqian</creatorcontrib><creatorcontrib>Yang, Xiai</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Environmental progress</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Wenju</au><au>Yu, Haiying</au><au>Ding, Lei</au><au>Wu, Keqian</au><au>Yang, Xiai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing water‐nitrogen regulation for enhanced carbon absorption and reduced greenhouse gas emissions in greenhouse tomato cultivation</atitle><jtitle>Environmental progress</jtitle><date>2025-01</date><risdate>2025</risdate><volume>44</volume><issue>1</issue><epage>n/a</epage><issn>1944-7442</issn><eissn>1944-7450</eissn><abstract>To study the impact of different water‐nitrogen regulation modes on the carbon cycle of greenhouse tomatoes and determine optimal irrigation and nitrogen application levels to enhance carbon absorption and minimize greenhouse gas emissions. This study employed three irrigation levels (100%, 80%, and 60% of ET0) and three nitrogen application levels (240, 192, and 144 kg·ha−1), along with a control group (W1N1, i.e., 100% ET0‐240 kg·ha−1). Gas‐chromatography methods were used to monitor CH4 and soil CO2 emissions, while assessing dry matter, carbon content, and carbon fixation capacity of tomato organs throughout the growth period. Additionally, a system for evaluating the net ecosystem carbon budget of facility tomatoes was developed based on net primary productivity. Results indicated reduced CH4 and soil CO2 emissions with decreased irrigation and nitrogen application. Dry matter, carbon content, and carbon fixation of tomato organs initially increased with reduced nitrogen and irrigation but then declined. The W2N2 (80% ET0‐192 kg·ha−1) treatment showed maximal values for dry matter, carbon content, carbon fixation, net primary productivity (NPP), and gross primary productivity (GPP). Findings suggest a positive net ecosystem carbon budget under reduced water and nitrogen conditions, indicating carbon absorption. Specifically, the W2N2 treatment outperformed others in net carbon absorption, highlighting its potential as an effective mode for enhancing carbon sequestration in the region.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/ep.14524</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-7442
ispartof Environmental progress, 2025-01, Vol.44 (1), p.n/a
issn 1944-7442
1944-7450
language eng
recordid cdi_proquest_journals_3160237839
source Wiley Online Library Journals Frontfile Complete
subjects Absorption
Carbon
carbon budget
Carbon content
Carbon cycle
Carbon dioxide
Carbon dioxide emissions
Carbon fixation
Carbon sequestration
Cultivation
Dry matter
Emissions
Emissions control
farmland net ecosystem
Fixation
Fruit cultivation
Greenhouse gases
greenhouse tomato
Irrigation
Methane
Net Primary Productivity
Nitrogen
Optimization
Organs
Productivity
Tomatoes
water saving and nitrogen reduction
title Optimizing water‐nitrogen regulation for enhanced carbon absorption and reduced greenhouse gas emissions in greenhouse tomato cultivation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T21%3A03%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20water%E2%80%90nitrogen%20regulation%20for%20enhanced%20carbon%20absorption%20and%20reduced%20greenhouse%20gas%20emissions%20in%20greenhouse%20tomato%20cultivation&rft.jtitle=Environmental%20progress&rft.au=Zhao,%20Wenju&rft.date=2025-01&rft.volume=44&rft.issue=1&rft.epage=n/a&rft.issn=1944-7442&rft.eissn=1944-7450&rft_id=info:doi/10.1002/ep.14524&rft_dat=%3Cproquest_cross%3E3160237839%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3160237839&rft_id=info:pmid/&rfr_iscdi=true