Five-Axis Printing of Continuous Fibers on the Mold
This paper explores a five-axis printing method designed to improve the fabrication of continuous fiber-reinforced thermoplastic composites (CFRTPCs), essential for producing lightweight, complex structures in advanced manufacturing. Traditional CFRTPC placement techniques often face challenges with...
Gespeichert in:
Veröffentlicht in: | Journal of Manufacturing and Materials Processing 2025-01, Vol.9 (1), p.17 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 17 |
container_title | Journal of Manufacturing and Materials Processing |
container_volume | 9 |
creator | Michalec, Paweł Laux, Marius Srinivas, Gidugu Lakshmi Weidner, Robert Brandstötter, Mathias |
description | This paper explores a five-axis printing method designed to improve the fabrication of continuous fiber-reinforced thermoplastic composites (CFRTPCs), essential for producing lightweight, complex structures in advanced manufacturing. Traditional CFRTPC placement techniques often face challenges with precision, scalability, and optimal fiber orientation, especially in customized, small-scale applications. The proposed five-axis printing technique overcomes these issues by enabling precise fiber orientation and the production of robust spatial structures using 3D-printed molds compatible with CFRTPCs. Validation through three-point bending and surface quality tests revealed that five-axis printed cylindrical-lattice samples, with fibers oriented at 45°, exhibited superior mechanical properties and surface quality. The five-axis printed samples achieved a load-to-weight ratio 27% higher than traditional samples and maintained their shape even under significant deformation. Surface quality improved significantly, with roughness values reduced from 37.63 µm to approximately 12 µm. This method advances CFRTPC applications in industries requiring complex, lightweight components. |
doi_str_mv | 10.3390/jmmp9010017 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_3159515387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_690d629620304f61bbc1ca38a6890d57</doaj_id><sourcerecordid>3159515387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-286bfcf72e4027c3b3152ef733aa25a3fec0506f93d89d78fce7f76d12ce5cd3</originalsourceid><addsrcrecordid>eNpNUEFOwzAQtBBIVKUnPhCJIwqsvbEdH6uKQiUQHHq3HMcuidq42AmC35NShHra0e5odmYIuaZwh6jgvt3t9gooAJVnZMI4FHlRqOL8BF-SWUotALCSS1Q4IbhsPl0-_2pS9habrm-6TRZ8tggHOIQhZcumcjFlocv6d5e9hG19RS682SY3-5tTsl4-rBdP-fPr42oxf84t46zPWSkqb71krgAmLVZIOXNeIhrDuEHvLHAQXmFdqlqW3jrppagps47bGqdkdZStg2n1PjY7E791MI3-XYS40Sb2jd06LRTUginBAKHwglaVpdZgaUQ5XsaoU3Jz1NrH8DG41Os2DLEb3evRleKUY3lg3R5ZNoaUovP_XynoQ8f6pGP8AWchbLc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3159515387</pqid></control><display><type>article</type><title>Five-Axis Printing of Continuous Fibers on the Mold</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>EZB Electronic Journals Library</source><creator>Michalec, Paweł ; Laux, Marius ; Srinivas, Gidugu Lakshmi ; Weidner, Robert ; Brandstötter, Mathias</creator><creatorcontrib>Michalec, Paweł ; Laux, Marius ; Srinivas, Gidugu Lakshmi ; Weidner, Robert ; Brandstötter, Mathias</creatorcontrib><description>This paper explores a five-axis printing method designed to improve the fabrication of continuous fiber-reinforced thermoplastic composites (CFRTPCs), essential for producing lightweight, complex structures in advanced manufacturing. Traditional CFRTPC placement techniques often face challenges with precision, scalability, and optimal fiber orientation, especially in customized, small-scale applications. The proposed five-axis printing technique overcomes these issues by enabling precise fiber orientation and the production of robust spatial structures using 3D-printed molds compatible with CFRTPCs. Validation through three-point bending and surface quality tests revealed that five-axis printed cylindrical-lattice samples, with fibers oriented at 45°, exhibited superior mechanical properties and surface quality. The five-axis printed samples achieved a load-to-weight ratio 27% higher than traditional samples and maintained their shape even under significant deformation. Surface quality improved significantly, with roughness values reduced from 37.63 µm to approximately 12 µm. This method advances CFRTPC applications in industries requiring complex, lightweight components.</description><identifier>ISSN: 2504-4494</identifier><identifier>EISSN: 2504-4494</identifier><identifier>DOI: 10.3390/jmmp9010017</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>3-D printers ; Additive manufacturing ; Automation ; Carbon fibers ; CFRTPC ; continuous carbon fibers ; Continuous fiber composites ; Design ; Fiber orientation ; Fiber reinforced polymers ; Five axis ; five-axis printing ; Kinematics ; lattice structure ; Lightweight ; Mechanical properties ; Methods ; Printing ; Robotics ; Surface properties ; Weight reduction</subject><ispartof>Journal of Manufacturing and Materials Processing, 2025-01, Vol.9 (1), p.17</ispartof><rights>2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-286bfcf72e4027c3b3152ef733aa25a3fec0506f93d89d78fce7f76d12ce5cd3</cites><orcidid>0000-0002-3059-0043 ; 0009-0002-7333-8400 ; 0000-0002-1289-3139 ; 0000-0003-1286-4458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Michalec, Paweł</creatorcontrib><creatorcontrib>Laux, Marius</creatorcontrib><creatorcontrib>Srinivas, Gidugu Lakshmi</creatorcontrib><creatorcontrib>Weidner, Robert</creatorcontrib><creatorcontrib>Brandstötter, Mathias</creatorcontrib><title>Five-Axis Printing of Continuous Fibers on the Mold</title><title>Journal of Manufacturing and Materials Processing</title><description>This paper explores a five-axis printing method designed to improve the fabrication of continuous fiber-reinforced thermoplastic composites (CFRTPCs), essential for producing lightweight, complex structures in advanced manufacturing. Traditional CFRTPC placement techniques often face challenges with precision, scalability, and optimal fiber orientation, especially in customized, small-scale applications. The proposed five-axis printing technique overcomes these issues by enabling precise fiber orientation and the production of robust spatial structures using 3D-printed molds compatible with CFRTPCs. Validation through three-point bending and surface quality tests revealed that five-axis printed cylindrical-lattice samples, with fibers oriented at 45°, exhibited superior mechanical properties and surface quality. The five-axis printed samples achieved a load-to-weight ratio 27% higher than traditional samples and maintained their shape even under significant deformation. Surface quality improved significantly, with roughness values reduced from 37.63 µm to approximately 12 µm. This method advances CFRTPC applications in industries requiring complex, lightweight components.</description><subject>3-D printers</subject><subject>Additive manufacturing</subject><subject>Automation</subject><subject>Carbon fibers</subject><subject>CFRTPC</subject><subject>continuous carbon fibers</subject><subject>Continuous fiber composites</subject><subject>Design</subject><subject>Fiber orientation</subject><subject>Fiber reinforced polymers</subject><subject>Five axis</subject><subject>five-axis printing</subject><subject>Kinematics</subject><subject>lattice structure</subject><subject>Lightweight</subject><subject>Mechanical properties</subject><subject>Methods</subject><subject>Printing</subject><subject>Robotics</subject><subject>Surface properties</subject><subject>Weight reduction</subject><issn>2504-4494</issn><issn>2504-4494</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNpNUEFOwzAQtBBIVKUnPhCJIwqsvbEdH6uKQiUQHHq3HMcuidq42AmC35NShHra0e5odmYIuaZwh6jgvt3t9gooAJVnZMI4FHlRqOL8BF-SWUotALCSS1Q4IbhsPl0-_2pS9habrm-6TRZ8tggHOIQhZcumcjFlocv6d5e9hG19RS682SY3-5tTsl4-rBdP-fPr42oxf84t46zPWSkqb71krgAmLVZIOXNeIhrDuEHvLHAQXmFdqlqW3jrppagps47bGqdkdZStg2n1PjY7E791MI3-XYS40Sb2jd06LRTUginBAKHwglaVpdZgaUQ5XsaoU3Jz1NrH8DG41Os2DLEb3evRleKUY3lg3R5ZNoaUovP_XynoQ8f6pGP8AWchbLc</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Michalec, Paweł</creator><creator>Laux, Marius</creator><creator>Srinivas, Gidugu Lakshmi</creator><creator>Weidner, Robert</creator><creator>Brandstötter, Mathias</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3059-0043</orcidid><orcidid>https://orcid.org/0009-0002-7333-8400</orcidid><orcidid>https://orcid.org/0000-0002-1289-3139</orcidid><orcidid>https://orcid.org/0000-0003-1286-4458</orcidid></search><sort><creationdate>20250101</creationdate><title>Five-Axis Printing of Continuous Fibers on the Mold</title><author>Michalec, Paweł ; Laux, Marius ; Srinivas, Gidugu Lakshmi ; Weidner, Robert ; Brandstötter, Mathias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-286bfcf72e4027c3b3152ef733aa25a3fec0506f93d89d78fce7f76d12ce5cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>3-D printers</topic><topic>Additive manufacturing</topic><topic>Automation</topic><topic>Carbon fibers</topic><topic>CFRTPC</topic><topic>continuous carbon fibers</topic><topic>Continuous fiber composites</topic><topic>Design</topic><topic>Fiber orientation</topic><topic>Fiber reinforced polymers</topic><topic>Five axis</topic><topic>five-axis printing</topic><topic>Kinematics</topic><topic>lattice structure</topic><topic>Lightweight</topic><topic>Mechanical properties</topic><topic>Methods</topic><topic>Printing</topic><topic>Robotics</topic><topic>Surface properties</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Michalec, Paweł</creatorcontrib><creatorcontrib>Laux, Marius</creatorcontrib><creatorcontrib>Srinivas, Gidugu Lakshmi</creatorcontrib><creatorcontrib>Weidner, Robert</creatorcontrib><creatorcontrib>Brandstötter, Mathias</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM global</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Manufacturing and Materials Processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Michalec, Paweł</au><au>Laux, Marius</au><au>Srinivas, Gidugu Lakshmi</au><au>Weidner, Robert</au><au>Brandstötter, Mathias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Five-Axis Printing of Continuous Fibers on the Mold</atitle><jtitle>Journal of Manufacturing and Materials Processing</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>9</volume><issue>1</issue><spage>17</spage><pages>17-</pages><issn>2504-4494</issn><eissn>2504-4494</eissn><abstract>This paper explores a five-axis printing method designed to improve the fabrication of continuous fiber-reinforced thermoplastic composites (CFRTPCs), essential for producing lightweight, complex structures in advanced manufacturing. Traditional CFRTPC placement techniques often face challenges with precision, scalability, and optimal fiber orientation, especially in customized, small-scale applications. The proposed five-axis printing technique overcomes these issues by enabling precise fiber orientation and the production of robust spatial structures using 3D-printed molds compatible with CFRTPCs. Validation through three-point bending and surface quality tests revealed that five-axis printed cylindrical-lattice samples, with fibers oriented at 45°, exhibited superior mechanical properties and surface quality. The five-axis printed samples achieved a load-to-weight ratio 27% higher than traditional samples and maintained their shape even under significant deformation. Surface quality improved significantly, with roughness values reduced from 37.63 µm to approximately 12 µm. This method advances CFRTPC applications in industries requiring complex, lightweight components.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/jmmp9010017</doi><orcidid>https://orcid.org/0000-0002-3059-0043</orcidid><orcidid>https://orcid.org/0009-0002-7333-8400</orcidid><orcidid>https://orcid.org/0000-0002-1289-3139</orcidid><orcidid>https://orcid.org/0000-0003-1286-4458</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2504-4494 |
ispartof | Journal of Manufacturing and Materials Processing, 2025-01, Vol.9 (1), p.17 |
issn | 2504-4494 2504-4494 |
language | eng |
recordid | cdi_proquest_journals_3159515387 |
source | MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; EZB Electronic Journals Library |
subjects | 3-D printers Additive manufacturing Automation Carbon fibers CFRTPC continuous carbon fibers Continuous fiber composites Design Fiber orientation Fiber reinforced polymers Five axis five-axis printing Kinematics lattice structure Lightweight Mechanical properties Methods Printing Robotics Surface properties Weight reduction |
title | Five-Axis Printing of Continuous Fibers on the Mold |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A00%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Five-Axis%20Printing%20of%20Continuous%20Fibers%20on%20the%20Mold&rft.jtitle=Journal%20of%20Manufacturing%20and%20Materials%20Processing&rft.au=Michalec,%20Pawe%C5%82&rft.date=2025-01-01&rft.volume=9&rft.issue=1&rft.spage=17&rft.pages=17-&rft.issn=2504-4494&rft.eissn=2504-4494&rft_id=info:doi/10.3390/jmmp9010017&rft_dat=%3Cproquest_doaj_%3E3159515387%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3159515387&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_690d629620304f61bbc1ca38a6890d57&rfr_iscdi=true |