DCGAN-Based Feature Augmentation: A Novel Approach for Efficient Mineralization Prediction Through Data Generation
This study aims to improve the efficiency of mineral exploration by introducing a novel application of Deep Convolutional Generative Adversarial Networks (DCGANs) to augment geological evidence layers. By training a DCGAN model with existing geological, geochemical, and remote sensing data, we have...
Gespeichert in:
Veröffentlicht in: | Minerals (Basel) 2025-01, Vol.15 (1), p.71 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 71 |
container_title | Minerals (Basel) |
container_volume | 15 |
creator | Qaderi, Soran Maghsoudi, Abbas Pour, Amin Beiranvand Rajabi, Abdorrahman Yousefi, Mahyar |
description | This study aims to improve the efficiency of mineral exploration by introducing a novel application of Deep Convolutional Generative Adversarial Networks (DCGANs) to augment geological evidence layers. By training a DCGAN model with existing geological, geochemical, and remote sensing data, we have synthesized new, plausible layers of evidence that reveal unrecognized patterns and correlations. This approach deepens the understanding of the controlling factors in the formation of mineral deposits. The implications of this research are significant and could improve the efficiency and success rate of mineral exploration projects by providing more reliable and comprehensive data for decision-making. The predictive map created using the proposed feature augmentation technique covered all known deposits in only 18% of the study area. |
doi_str_mv | 10.3390/min15010071 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3159513547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3159513547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c149t-a537732b9311f5eddb0a724dc200ab82cddd31bebc2bba7693e0e0b1205f59b73</originalsourceid><addsrcrecordid>eNpNkEtLAzEUhYMoWGpX_oGASxnNo2kad2NfCrW6qOBuyOOmTWlnamZGqL_emdZF7-YeLh_nHg5Ct5Q8cK7I4y7kVBBKiKQXqMOIFAkd8K_LM32NemW5Ic0oyoeCdVAcj2bpInnWJTg8BV3VEXBar3aQV7oKRf6EU7wofmCL0_0-FtqusS8inngfbGgg_BZyiHobfo84_ojggj3K5ToW9WqNx7rSeAYt1t5v0JXX2xJ6_7uLPqeT5eglmb_PXkfpPLG0r6pECy4lZ0ZxSr0A5wzRkvWdZYRoM2TWOcepAWOZMVoOFAcCxFBGhBfKSN5FdyffJvZ3DWWVbYo65s3LjFOhBOWi31L3J8rGoiwj-Gwfw07HQ0ZJ1vaanfXK_wCoGGuF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3159513547</pqid></control><display><type>article</type><title>DCGAN-Based Feature Augmentation: A Novel Approach for Efficient Mineralization Prediction Through Data Generation</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Qaderi, Soran ; Maghsoudi, Abbas ; Pour, Amin Beiranvand ; Rajabi, Abdorrahman ; Yousefi, Mahyar</creator><creatorcontrib>Qaderi, Soran ; Maghsoudi, Abbas ; Pour, Amin Beiranvand ; Rajabi, Abdorrahman ; Yousefi, Mahyar</creatorcontrib><description>This study aims to improve the efficiency of mineral exploration by introducing a novel application of Deep Convolutional Generative Adversarial Networks (DCGANs) to augment geological evidence layers. By training a DCGAN model with existing geological, geochemical, and remote sensing data, we have synthesized new, plausible layers of evidence that reveal unrecognized patterns and correlations. This approach deepens the understanding of the controlling factors in the formation of mineral deposits. The implications of this research are significant and could improve the efficiency and success rate of mineral exploration projects by providing more reliable and comprehensive data for decision-making. The predictive map created using the proposed feature augmentation technique covered all known deposits in only 18% of the study area.</description><identifier>ISSN: 2075-163X</identifier><identifier>EISSN: 2075-163X</identifier><identifier>DOI: 10.3390/min15010071</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Decision making ; Fault lines ; Generative adversarial networks ; Geological mapping ; Geology ; Lithology ; Mineral deposits ; Mineral exploration ; Mineralization ; Minerals ; Neural networks ; Remote sensing ; Sediments ; Stone</subject><ispartof>Minerals (Basel), 2025-01, Vol.15 (1), p.71</ispartof><rights>2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c149t-a537732b9311f5eddb0a724dc200ab82cddd31bebc2bba7693e0e0b1205f59b73</cites><orcidid>0000-0003-3039-0575 ; 0000-0001-8783-5120 ; 0009-0005-9864-9223</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Qaderi, Soran</creatorcontrib><creatorcontrib>Maghsoudi, Abbas</creatorcontrib><creatorcontrib>Pour, Amin Beiranvand</creatorcontrib><creatorcontrib>Rajabi, Abdorrahman</creatorcontrib><creatorcontrib>Yousefi, Mahyar</creatorcontrib><title>DCGAN-Based Feature Augmentation: A Novel Approach for Efficient Mineralization Prediction Through Data Generation</title><title>Minerals (Basel)</title><description>This study aims to improve the efficiency of mineral exploration by introducing a novel application of Deep Convolutional Generative Adversarial Networks (DCGANs) to augment geological evidence layers. By training a DCGAN model with existing geological, geochemical, and remote sensing data, we have synthesized new, plausible layers of evidence that reveal unrecognized patterns and correlations. This approach deepens the understanding of the controlling factors in the formation of mineral deposits. The implications of this research are significant and could improve the efficiency and success rate of mineral exploration projects by providing more reliable and comprehensive data for decision-making. The predictive map created using the proposed feature augmentation technique covered all known deposits in only 18% of the study area.</description><subject>Algorithms</subject><subject>Decision making</subject><subject>Fault lines</subject><subject>Generative adversarial networks</subject><subject>Geological mapping</subject><subject>Geology</subject><subject>Lithology</subject><subject>Mineral deposits</subject><subject>Mineral exploration</subject><subject>Mineralization</subject><subject>Minerals</subject><subject>Neural networks</subject><subject>Remote sensing</subject><subject>Sediments</subject><subject>Stone</subject><issn>2075-163X</issn><issn>2075-163X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpNkEtLAzEUhYMoWGpX_oGASxnNo2kad2NfCrW6qOBuyOOmTWlnamZGqL_emdZF7-YeLh_nHg5Ct5Q8cK7I4y7kVBBKiKQXqMOIFAkd8K_LM32NemW5Ic0oyoeCdVAcj2bpInnWJTg8BV3VEXBar3aQV7oKRf6EU7wofmCL0_0-FtqusS8inngfbGgg_BZyiHobfo84_ojggj3K5ToW9WqNx7rSeAYt1t5v0JXX2xJ6_7uLPqeT5eglmb_PXkfpPLG0r6pECy4lZ0ZxSr0A5wzRkvWdZYRoM2TWOcepAWOZMVoOFAcCxFBGhBfKSN5FdyffJvZ3DWWVbYo65s3LjFOhBOWi31L3J8rGoiwj-Gwfw07HQ0ZJ1vaanfXK_wCoGGuF</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Qaderi, Soran</creator><creator>Maghsoudi, Abbas</creator><creator>Pour, Amin Beiranvand</creator><creator>Rajabi, Abdorrahman</creator><creator>Yousefi, Mahyar</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L.G</scope><scope>M0C</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3039-0575</orcidid><orcidid>https://orcid.org/0000-0001-8783-5120</orcidid><orcidid>https://orcid.org/0009-0005-9864-9223</orcidid></search><sort><creationdate>20250101</creationdate><title>DCGAN-Based Feature Augmentation: A Novel Approach for Efficient Mineralization Prediction Through Data Generation</title><author>Qaderi, Soran ; Maghsoudi, Abbas ; Pour, Amin Beiranvand ; Rajabi, Abdorrahman ; Yousefi, Mahyar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c149t-a537732b9311f5eddb0a724dc200ab82cddd31bebc2bba7693e0e0b1205f59b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Algorithms</topic><topic>Decision making</topic><topic>Fault lines</topic><topic>Generative adversarial networks</topic><topic>Geological mapping</topic><topic>Geology</topic><topic>Lithology</topic><topic>Mineral deposits</topic><topic>Mineral exploration</topic><topic>Mineralization</topic><topic>Minerals</topic><topic>Neural networks</topic><topic>Remote sensing</topic><topic>Sediments</topic><topic>Stone</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qaderi, Soran</creatorcontrib><creatorcontrib>Maghsoudi, Abbas</creatorcontrib><creatorcontrib>Pour, Amin Beiranvand</creatorcontrib><creatorcontrib>Rajabi, Abdorrahman</creatorcontrib><creatorcontrib>Yousefi, Mahyar</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ABI/INFORM global</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Minerals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qaderi, Soran</au><au>Maghsoudi, Abbas</au><au>Pour, Amin Beiranvand</au><au>Rajabi, Abdorrahman</au><au>Yousefi, Mahyar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DCGAN-Based Feature Augmentation: A Novel Approach for Efficient Mineralization Prediction Through Data Generation</atitle><jtitle>Minerals (Basel)</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>15</volume><issue>1</issue><spage>71</spage><pages>71-</pages><issn>2075-163X</issn><eissn>2075-163X</eissn><abstract>This study aims to improve the efficiency of mineral exploration by introducing a novel application of Deep Convolutional Generative Adversarial Networks (DCGANs) to augment geological evidence layers. By training a DCGAN model with existing geological, geochemical, and remote sensing data, we have synthesized new, plausible layers of evidence that reveal unrecognized patterns and correlations. This approach deepens the understanding of the controlling factors in the formation of mineral deposits. The implications of this research are significant and could improve the efficiency and success rate of mineral exploration projects by providing more reliable and comprehensive data for decision-making. The predictive map created using the proposed feature augmentation technique covered all known deposits in only 18% of the study area.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/min15010071</doi><orcidid>https://orcid.org/0000-0003-3039-0575</orcidid><orcidid>https://orcid.org/0000-0001-8783-5120</orcidid><orcidid>https://orcid.org/0009-0005-9864-9223</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-163X |
ispartof | Minerals (Basel), 2025-01, Vol.15 (1), p.71 |
issn | 2075-163X 2075-163X |
language | eng |
recordid | cdi_proquest_journals_3159513547 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Algorithms Decision making Fault lines Generative adversarial networks Geological mapping Geology Lithology Mineral deposits Mineral exploration Mineralization Minerals Neural networks Remote sensing Sediments Stone |
title | DCGAN-Based Feature Augmentation: A Novel Approach for Efficient Mineralization Prediction Through Data Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T06%3A49%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DCGAN-Based%20Feature%20Augmentation:%20A%20Novel%20Approach%20for%20Efficient%20Mineralization%20Prediction%20Through%20Data%20Generation&rft.jtitle=Minerals%20(Basel)&rft.au=Qaderi,%20Soran&rft.date=2025-01-01&rft.volume=15&rft.issue=1&rft.spage=71&rft.pages=71-&rft.issn=2075-163X&rft.eissn=2075-163X&rft_id=info:doi/10.3390/min15010071&rft_dat=%3Cproquest_cross%3E3159513547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3159513547&rft_id=info:pmid/&rfr_iscdi=true |