Evaluating climate change impacts on snow cover and karst spring discharge in a data-scarce region: a case study of Iran

The incremental impacts of climate change on elements within the water cycle are a growing concern. Intricate karst aquifers have received limited attention concerning climate change, especially those with sparse data. Additionally, snow cover has been overlooked in simulating karst spring discharge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta geophysica 2025, Vol.73 (1), p.831-854
Hauptverfasser: Zeydalinejad, Nejat, Pour-Beyranvand, Ali, Nassery, Hamid Reza, Ghazi, Babak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 854
container_issue 1
container_start_page 831
container_title Acta geophysica
container_volume 73
creator Zeydalinejad, Nejat
Pour-Beyranvand, Ali
Nassery, Hamid Reza
Ghazi, Babak
description The incremental impacts of climate change on elements within the water cycle are a growing concern. Intricate karst aquifers have received limited attention concerning climate change, especially those with sparse data. Additionally, snow cover has been overlooked in simulating karst spring discharge rates. This study aims to assess climate change effects in a data-scarce karst anticline, specifically Khorramabad, Iran, focusing on temperature, precipitation, snow cover, and Kio spring flows. Utilizing two shared socioeconomic pathways (SSPs), namely SSP2-4.5 and SSP5-8.5, extracted from the CMIP6 dataset for the base period (1991–2018) and future periods (2021–2040 and 2041–2060), the research employs Landsat data and artificial neural networks (ANNs) for snow cover and spring discharge computation, respectively. ANNs are trained using the training and verification periods of 1991–2010 and 2011–2018, respectively. Results indicate projected increases in temperature, between + 1.21 °C (2021–2040 under SSP245) and + 2.93 °C (2041–2060 under SSP585), and precipitation, from + 2.91 mm/month (2041–2060 under SSP585) to + 4.86 mm/month (2021–2040 under SSP585). The ANN models satisfactorily simulate spring discharge and snow cover, predicting a decrease in snow cover between − 4 km 2 /month (2021–2040 under SSP245) and − 11.4 km 2 /month (2041–2060 under SSP585). Spring discharges are anticipated to increase from + 28.5 l/s (2021–2040 under SSP245) to + 57 l/s (2041–2060 under SSP585) and from + 12.1 l/s (2021–2040 under SSP585) to + 36.1 l/s (2041–2060 under SSP245), with and without snow cover as an input, respectively. These findings emphasize the importance of considering these changes for the sustainability of karst groundwater in the future.
doi_str_mv 10.1007/s11600-024-01400-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3158678537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3158678537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c314t-ba4790e3d5418308b1e3081d000c2702a440c8321d4e82a5bbdb037e1a7cffc93</originalsourceid><addsrcrecordid>eNp9kMFOwzAMhiMEEmPwApwicS44Tbp03NA0YNIkLnCO3CQdHVs6knSwtyelSHDiYluRv9_KR8glg2sGIG8CYxOADHKRARNpmh6RESunRSZFURz_mU_JWQhrgIkAlo_I53yPmw5j41ZUb5otRkv1K7qVpc12hzoG2joaXPtBdbu3nqIz9A19iDTsfE-ZJiTA94CjSA1GzIJGry31dtW07ja9agyWhtiZA21ruvDozslJjZtgL376mLzcz59nj9ny6WExu1tmmjMRswqFnILlphCs5FBWzKbKDADoXEKOQoAuec6MsGWORVWZCri0DKWuaz3lY3I15O58-97ZENW67bxLJxVnRTmRZcFl2sqHLe3bELytVfrcFv1BMVC9YTUYVsmw-jas-mg-QIMJ63-j_6G-AAQKfmM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3158678537</pqid></control><display><type>article</type><title>Evaluating climate change impacts on snow cover and karst spring discharge in a data-scarce region: a case study of Iran</title><source>SpringerLink Journals</source><creator>Zeydalinejad, Nejat ; Pour-Beyranvand, Ali ; Nassery, Hamid Reza ; Ghazi, Babak</creator><creatorcontrib>Zeydalinejad, Nejat ; Pour-Beyranvand, Ali ; Nassery, Hamid Reza ; Ghazi, Babak</creatorcontrib><description>The incremental impacts of climate change on elements within the water cycle are a growing concern. Intricate karst aquifers have received limited attention concerning climate change, especially those with sparse data. Additionally, snow cover has been overlooked in simulating karst spring discharge rates. This study aims to assess climate change effects in a data-scarce karst anticline, specifically Khorramabad, Iran, focusing on temperature, precipitation, snow cover, and Kio spring flows. Utilizing two shared socioeconomic pathways (SSPs), namely SSP2-4.5 and SSP5-8.5, extracted from the CMIP6 dataset for the base period (1991–2018) and future periods (2021–2040 and 2041–2060), the research employs Landsat data and artificial neural networks (ANNs) for snow cover and spring discharge computation, respectively. ANNs are trained using the training and verification periods of 1991–2010 and 2011–2018, respectively. Results indicate projected increases in temperature, between + 1.21 °C (2021–2040 under SSP245) and + 2.93 °C (2041–2060 under SSP585), and precipitation, from + 2.91 mm/month (2041–2060 under SSP585) to + 4.86 mm/month (2021–2040 under SSP585). The ANN models satisfactorily simulate spring discharge and snow cover, predicting a decrease in snow cover between − 4 km 2 /month (2021–2040 under SSP245) and − 11.4 km 2 /month (2041–2060 under SSP585). Spring discharges are anticipated to increase from + 28.5 l/s (2021–2040 under SSP245) to + 57 l/s (2041–2060 under SSP585) and from + 12.1 l/s (2021–2040 under SSP585) to + 36.1 l/s (2041–2060 under SSP245), with and without snow cover as an input, respectively. These findings emphasize the importance of considering these changes for the sustainability of karst groundwater in the future.</description><identifier>ISSN: 1895-7455</identifier><identifier>ISSN: 1895-6572</identifier><identifier>EISSN: 1895-7455</identifier><identifier>DOI: 10.1007/s11600-024-01400-9</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Anticlines ; Aquifers ; Artificial neural networks ; Climate change ; Earth and Environmental Science ; Earth Sciences ; Environmental assessment ; Environmental impact ; Geophysics/Geodesy ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydrologic cycle ; Karst ; Karst springs ; Landsat ; Neural networks ; Precipitation ; Remote sensing ; Research Article - Hydrology and Hydraulics ; Snow ; Snow cover ; Spring (season) ; Structural Geology ; Water discharge</subject><ispartof>Acta geophysica, 2025, Vol.73 (1), p.831-854</ispartof><rights>Crown 2024</rights><rights>Copyright Springer Nature B.V. 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c314t-ba4790e3d5418308b1e3081d000c2702a440c8321d4e82a5bbdb037e1a7cffc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11600-024-01400-9$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11600-024-01400-9$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Zeydalinejad, Nejat</creatorcontrib><creatorcontrib>Pour-Beyranvand, Ali</creatorcontrib><creatorcontrib>Nassery, Hamid Reza</creatorcontrib><creatorcontrib>Ghazi, Babak</creatorcontrib><title>Evaluating climate change impacts on snow cover and karst spring discharge in a data-scarce region: a case study of Iran</title><title>Acta geophysica</title><addtitle>Acta Geophys</addtitle><description>The incremental impacts of climate change on elements within the water cycle are a growing concern. Intricate karst aquifers have received limited attention concerning climate change, especially those with sparse data. Additionally, snow cover has been overlooked in simulating karst spring discharge rates. This study aims to assess climate change effects in a data-scarce karst anticline, specifically Khorramabad, Iran, focusing on temperature, precipitation, snow cover, and Kio spring flows. Utilizing two shared socioeconomic pathways (SSPs), namely SSP2-4.5 and SSP5-8.5, extracted from the CMIP6 dataset for the base period (1991–2018) and future periods (2021–2040 and 2041–2060), the research employs Landsat data and artificial neural networks (ANNs) for snow cover and spring discharge computation, respectively. ANNs are trained using the training and verification periods of 1991–2010 and 2011–2018, respectively. Results indicate projected increases in temperature, between + 1.21 °C (2021–2040 under SSP245) and + 2.93 °C (2041–2060 under SSP585), and precipitation, from + 2.91 mm/month (2041–2060 under SSP585) to + 4.86 mm/month (2021–2040 under SSP585). The ANN models satisfactorily simulate spring discharge and snow cover, predicting a decrease in snow cover between − 4 km 2 /month (2021–2040 under SSP245) and − 11.4 km 2 /month (2041–2060 under SSP585). Spring discharges are anticipated to increase from + 28.5 l/s (2021–2040 under SSP245) to + 57 l/s (2041–2060 under SSP585) and from + 12.1 l/s (2021–2040 under SSP585) to + 36.1 l/s (2041–2060 under SSP245), with and without snow cover as an input, respectively. These findings emphasize the importance of considering these changes for the sustainability of karst groundwater in the future.</description><subject>Anticlines</subject><subject>Aquifers</subject><subject>Artificial neural networks</subject><subject>Climate change</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environmental assessment</subject><subject>Environmental impact</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydrologic cycle</subject><subject>Karst</subject><subject>Karst springs</subject><subject>Landsat</subject><subject>Neural networks</subject><subject>Precipitation</subject><subject>Remote sensing</subject><subject>Research Article - Hydrology and Hydraulics</subject><subject>Snow</subject><subject>Snow cover</subject><subject>Spring (season)</subject><subject>Structural Geology</subject><subject>Water discharge</subject><issn>1895-7455</issn><issn>1895-6572</issn><issn>1895-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kMFOwzAMhiMEEmPwApwicS44Tbp03NA0YNIkLnCO3CQdHVs6knSwtyelSHDiYluRv9_KR8glg2sGIG8CYxOADHKRARNpmh6RESunRSZFURz_mU_JWQhrgIkAlo_I53yPmw5j41ZUb5otRkv1K7qVpc12hzoG2joaXPtBdbu3nqIz9A19iDTsfE-ZJiTA94CjSA1GzIJGry31dtW07ja9agyWhtiZA21ruvDozslJjZtgL376mLzcz59nj9ny6WExu1tmmjMRswqFnILlphCs5FBWzKbKDADoXEKOQoAuec6MsGWORVWZCri0DKWuaz3lY3I15O58-97ZENW67bxLJxVnRTmRZcFl2sqHLe3bELytVfrcFv1BMVC9YTUYVsmw-jas-mg-QIMJ63-j_6G-AAQKfmM</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Zeydalinejad, Nejat</creator><creator>Pour-Beyranvand, Ali</creator><creator>Nassery, Hamid Reza</creator><creator>Ghazi, Babak</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KL.</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>2025</creationdate><title>Evaluating climate change impacts on snow cover and karst spring discharge in a data-scarce region: a case study of Iran</title><author>Zeydalinejad, Nejat ; Pour-Beyranvand, Ali ; Nassery, Hamid Reza ; Ghazi, Babak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c314t-ba4790e3d5418308b1e3081d000c2702a440c8321d4e82a5bbdb037e1a7cffc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Anticlines</topic><topic>Aquifers</topic><topic>Artificial neural networks</topic><topic>Climate change</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environmental assessment</topic><topic>Environmental impact</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydrologic cycle</topic><topic>Karst</topic><topic>Karst springs</topic><topic>Landsat</topic><topic>Neural networks</topic><topic>Precipitation</topic><topic>Remote sensing</topic><topic>Research Article - Hydrology and Hydraulics</topic><topic>Snow</topic><topic>Snow cover</topic><topic>Spring (season)</topic><topic>Structural Geology</topic><topic>Water discharge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeydalinejad, Nejat</creatorcontrib><creatorcontrib>Pour-Beyranvand, Ali</creatorcontrib><creatorcontrib>Nassery, Hamid Reza</creatorcontrib><creatorcontrib>Ghazi, Babak</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta geophysica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeydalinejad, Nejat</au><au>Pour-Beyranvand, Ali</au><au>Nassery, Hamid Reza</au><au>Ghazi, Babak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluating climate change impacts on snow cover and karst spring discharge in a data-scarce region: a case study of Iran</atitle><jtitle>Acta geophysica</jtitle><stitle>Acta Geophys</stitle><date>2025</date><risdate>2025</risdate><volume>73</volume><issue>1</issue><spage>831</spage><epage>854</epage><pages>831-854</pages><issn>1895-7455</issn><issn>1895-6572</issn><eissn>1895-7455</eissn><abstract>The incremental impacts of climate change on elements within the water cycle are a growing concern. Intricate karst aquifers have received limited attention concerning climate change, especially those with sparse data. Additionally, snow cover has been overlooked in simulating karst spring discharge rates. This study aims to assess climate change effects in a data-scarce karst anticline, specifically Khorramabad, Iran, focusing on temperature, precipitation, snow cover, and Kio spring flows. Utilizing two shared socioeconomic pathways (SSPs), namely SSP2-4.5 and SSP5-8.5, extracted from the CMIP6 dataset for the base period (1991–2018) and future periods (2021–2040 and 2041–2060), the research employs Landsat data and artificial neural networks (ANNs) for snow cover and spring discharge computation, respectively. ANNs are trained using the training and verification periods of 1991–2010 and 2011–2018, respectively. Results indicate projected increases in temperature, between + 1.21 °C (2021–2040 under SSP245) and + 2.93 °C (2041–2060 under SSP585), and precipitation, from + 2.91 mm/month (2041–2060 under SSP585) to + 4.86 mm/month (2021–2040 under SSP585). The ANN models satisfactorily simulate spring discharge and snow cover, predicting a decrease in snow cover between − 4 km 2 /month (2021–2040 under SSP245) and − 11.4 km 2 /month (2041–2060 under SSP585). Spring discharges are anticipated to increase from + 28.5 l/s (2021–2040 under SSP245) to + 57 l/s (2041–2060 under SSP585) and from + 12.1 l/s (2021–2040 under SSP585) to + 36.1 l/s (2041–2060 under SSP245), with and without snow cover as an input, respectively. These findings emphasize the importance of considering these changes for the sustainability of karst groundwater in the future.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11600-024-01400-9</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1895-7455
ispartof Acta geophysica, 2025, Vol.73 (1), p.831-854
issn 1895-7455
1895-6572
1895-7455
language eng
recordid cdi_proquest_journals_3158678537
source SpringerLink Journals
subjects Anticlines
Aquifers
Artificial neural networks
Climate change
Earth and Environmental Science
Earth Sciences
Environmental assessment
Environmental impact
Geophysics/Geodesy
Geotechnical Engineering & Applied Earth Sciences
Hydrologic cycle
Karst
Karst springs
Landsat
Neural networks
Precipitation
Remote sensing
Research Article - Hydrology and Hydraulics
Snow
Snow cover
Spring (season)
Structural Geology
Water discharge
title Evaluating climate change impacts on snow cover and karst spring discharge in a data-scarce region: a case study of Iran
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T02%3A09%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluating%20climate%20change%20impacts%20on%20snow%20cover%20and%20karst%20spring%20discharge%20in%20a%20data-scarce%20region:%20a%20case%20study%20of%20Iran&rft.jtitle=Acta%20geophysica&rft.au=Zeydalinejad,%20Nejat&rft.date=2025&rft.volume=73&rft.issue=1&rft.spage=831&rft.epage=854&rft.pages=831-854&rft.issn=1895-7455&rft.eissn=1895-7455&rft_id=info:doi/10.1007/s11600-024-01400-9&rft_dat=%3Cproquest_cross%3E3158678537%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3158678537&rft_id=info:pmid/&rfr_iscdi=true