A cooperative strategy-based differential evolution algorithm for robust PEM fuel cell parameter estimation

Proton exchange membrane fuel cells (PEMFCs) are powered by hydrogen energy, which is valued for its renewable, safe, and efficient characteristics, and are therefore critical in sustainable electricity generation through hydrogen electrochemical conversion. Parameter estimation in PEMFCs is a chall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2025, Vol.31 (1), p.703-741
Hauptverfasser: Jangir, Pradeep, Arpita, Agrawal, Sunilkumar P., Pandya, Sundaram B., Parmar, Anil, Kumar, Sumit, Tejani, Ghanshyam G., Abualigah, Laith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 741
container_issue 1
container_start_page 703
container_title Ionics
container_volume 31
creator Jangir, Pradeep
Arpita
Agrawal, Sunilkumar P.
Pandya, Sundaram B.
Parmar, Anil
Kumar, Sumit
Tejani, Ghanshyam G.
Abualigah, Laith
description Proton exchange membrane fuel cells (PEMFCs) are powered by hydrogen energy, which is valued for its renewable, safe, and efficient characteristics, and are therefore critical in sustainable electricity generation through hydrogen electrochemical conversion. Parameter estimation in PEMFCs is a challenging but critical task, since accurate modeling is directly related to cell performance optimization and reliable energy output under different operational conditions. To improve parameter estimation accuracy, a cooperative strategy-based differential evolution (CS-DE) algorithm was developed to minimize the sum of squared errors (SSE) between experimental and simulated PEMFC voltage data for multiple BCS 500-W PEM, BCS 250-W PEM, Nedstack PS6 PEM, 500W SR-12 PEM, H-12 PEM, and HORIZON 500W PEMFC models. The CS-DE algorithm was benchmarked against standard differential evolution (DE) and other conventional methods on six commercial PEMFC types, resulting in a 15% reduction in SSE and an average improvement of 12% in estimation accuracy. These results demonstrate the robustness and adaptability of CS-DE for complex PEMFC modeling tasks.
doi_str_mv 10.1007/s11581-024-05963-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3158667162</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3158667162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-753c30a5e9f19558849e7fb557d42cc849312363414ffba18d530f0dffe95423</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouH78A54CnqOTpknao4hfoOhh7yFtJ2vXblOTVPS_N-sK3jzNDLz35vEj5IzDBQfQl5FzWXEGRclA1kqwzz2y4JUqGGgF-2QBdamZhlIfkqMY1wBK8UIvyNsVbb2fMNjUfyCNKS-4-mKNjdjRrncOA46ptwPFDz_MqfcjtcPKhz69bqjzgQbfzDHRl5sn6mYcaIvDQCcb7AYTBoox9Ru79Z2QA2eHiKe_85gsb2-W1_fs8fnu4frqkbUFQGJailaAlVg7XktZVWWN2jVS6q4s2jafghdCiZKXzjWWV50U4KDLVWtZFuKYnO9ip-Df5_zerP0cxvzRiExJKc3VVlXsVG3wMQZ0Zgq5Z_gyHMyWqdkxNZmp-WFqPrNJ7Ewxi8cVhr_of1zfU1t7sA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3158667162</pqid></control><display><type>article</type><title>A cooperative strategy-based differential evolution algorithm for robust PEM fuel cell parameter estimation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jangir, Pradeep ; Arpita ; Agrawal, Sunilkumar P. ; Pandya, Sundaram B. ; Parmar, Anil ; Kumar, Sumit ; Tejani, Ghanshyam G. ; Abualigah, Laith</creator><creatorcontrib>Jangir, Pradeep ; Arpita ; Agrawal, Sunilkumar P. ; Pandya, Sundaram B. ; Parmar, Anil ; Kumar, Sumit ; Tejani, Ghanshyam G. ; Abualigah, Laith</creatorcontrib><description>Proton exchange membrane fuel cells (PEMFCs) are powered by hydrogen energy, which is valued for its renewable, safe, and efficient characteristics, and are therefore critical in sustainable electricity generation through hydrogen electrochemical conversion. Parameter estimation in PEMFCs is a challenging but critical task, since accurate modeling is directly related to cell performance optimization and reliable energy output under different operational conditions. To improve parameter estimation accuracy, a cooperative strategy-based differential evolution (CS-DE) algorithm was developed to minimize the sum of squared errors (SSE) between experimental and simulated PEMFC voltage data for multiple BCS 500-W PEM, BCS 250-W PEM, Nedstack PS6 PEM, 500W SR-12 PEM, H-12 PEM, and HORIZON 500W PEMFC models. The CS-DE algorithm was benchmarked against standard differential evolution (DE) and other conventional methods on six commercial PEMFC types, resulting in a 15% reduction in SSE and an average improvement of 12% in estimation accuracy. These results demonstrate the robustness and adaptability of CS-DE for complex PEMFC modeling tasks.</description><identifier>ISSN: 0947-7047</identifier><identifier>EISSN: 1862-0760</identifier><identifier>DOI: 10.1007/s11581-024-05963-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Algorithms ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Electrochemistry ; Energy Storage ; Evolutionary algorithms ; Evolutionary computation ; Modelling ; Optical and Electronic Materials ; Parameter estimation ; Parameter robustness ; Proton exchange membrane fuel cells ; Renewable and Green Energy ; Task complexity</subject><ispartof>Ionics, 2025, Vol.31 (1), p.703-741</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-753c30a5e9f19558849e7fb557d42cc849312363414ffba18d530f0dffe95423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11581-024-05963-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11581-024-05963-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jangir, Pradeep</creatorcontrib><creatorcontrib>Arpita</creatorcontrib><creatorcontrib>Agrawal, Sunilkumar P.</creatorcontrib><creatorcontrib>Pandya, Sundaram B.</creatorcontrib><creatorcontrib>Parmar, Anil</creatorcontrib><creatorcontrib>Kumar, Sumit</creatorcontrib><creatorcontrib>Tejani, Ghanshyam G.</creatorcontrib><creatorcontrib>Abualigah, Laith</creatorcontrib><title>A cooperative strategy-based differential evolution algorithm for robust PEM fuel cell parameter estimation</title><title>Ionics</title><addtitle>Ionics</addtitle><description>Proton exchange membrane fuel cells (PEMFCs) are powered by hydrogen energy, which is valued for its renewable, safe, and efficient characteristics, and are therefore critical in sustainable electricity generation through hydrogen electrochemical conversion. Parameter estimation in PEMFCs is a challenging but critical task, since accurate modeling is directly related to cell performance optimization and reliable energy output under different operational conditions. To improve parameter estimation accuracy, a cooperative strategy-based differential evolution (CS-DE) algorithm was developed to minimize the sum of squared errors (SSE) between experimental and simulated PEMFC voltage data for multiple BCS 500-W PEM, BCS 250-W PEM, Nedstack PS6 PEM, 500W SR-12 PEM, H-12 PEM, and HORIZON 500W PEMFC models. The CS-DE algorithm was benchmarked against standard differential evolution (DE) and other conventional methods on six commercial PEMFC types, resulting in a 15% reduction in SSE and an average improvement of 12% in estimation accuracy. These results demonstrate the robustness and adaptability of CS-DE for complex PEMFC modeling tasks.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Energy Storage</subject><subject>Evolutionary algorithms</subject><subject>Evolutionary computation</subject><subject>Modelling</subject><subject>Optical and Electronic Materials</subject><subject>Parameter estimation</subject><subject>Parameter robustness</subject><subject>Proton exchange membrane fuel cells</subject><subject>Renewable and Green Energy</subject><subject>Task complexity</subject><issn>0947-7047</issn><issn>1862-0760</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouH78A54CnqOTpknao4hfoOhh7yFtJ2vXblOTVPS_N-sK3jzNDLz35vEj5IzDBQfQl5FzWXEGRclA1kqwzz2y4JUqGGgF-2QBdamZhlIfkqMY1wBK8UIvyNsVbb2fMNjUfyCNKS-4-mKNjdjRrncOA46ptwPFDz_MqfcjtcPKhz69bqjzgQbfzDHRl5sn6mYcaIvDQCcb7AYTBoox9Ru79Z2QA2eHiKe_85gsb2-W1_fs8fnu4frqkbUFQGJailaAlVg7XktZVWWN2jVS6q4s2jafghdCiZKXzjWWV50U4KDLVWtZFuKYnO9ip-Df5_zerP0cxvzRiExJKc3VVlXsVG3wMQZ0Zgq5Z_gyHMyWqdkxNZmp-WFqPrNJ7Ewxi8cVhr_of1zfU1t7sA</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Jangir, Pradeep</creator><creator>Arpita</creator><creator>Agrawal, Sunilkumar P.</creator><creator>Pandya, Sundaram B.</creator><creator>Parmar, Anil</creator><creator>Kumar, Sumit</creator><creator>Tejani, Ghanshyam G.</creator><creator>Abualigah, Laith</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2025</creationdate><title>A cooperative strategy-based differential evolution algorithm for robust PEM fuel cell parameter estimation</title><author>Jangir, Pradeep ; Arpita ; Agrawal, Sunilkumar P. ; Pandya, Sundaram B. ; Parmar, Anil ; Kumar, Sumit ; Tejani, Ghanshyam G. ; Abualigah, Laith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-753c30a5e9f19558849e7fb557d42cc849312363414ffba18d530f0dffe95423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Energy Storage</topic><topic>Evolutionary algorithms</topic><topic>Evolutionary computation</topic><topic>Modelling</topic><topic>Optical and Electronic Materials</topic><topic>Parameter estimation</topic><topic>Parameter robustness</topic><topic>Proton exchange membrane fuel cells</topic><topic>Renewable and Green Energy</topic><topic>Task complexity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jangir, Pradeep</creatorcontrib><creatorcontrib>Arpita</creatorcontrib><creatorcontrib>Agrawal, Sunilkumar P.</creatorcontrib><creatorcontrib>Pandya, Sundaram B.</creatorcontrib><creatorcontrib>Parmar, Anil</creatorcontrib><creatorcontrib>Kumar, Sumit</creatorcontrib><creatorcontrib>Tejani, Ghanshyam G.</creatorcontrib><creatorcontrib>Abualigah, Laith</creatorcontrib><collection>CrossRef</collection><jtitle>Ionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jangir, Pradeep</au><au>Arpita</au><au>Agrawal, Sunilkumar P.</au><au>Pandya, Sundaram B.</au><au>Parmar, Anil</au><au>Kumar, Sumit</au><au>Tejani, Ghanshyam G.</au><au>Abualigah, Laith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A cooperative strategy-based differential evolution algorithm for robust PEM fuel cell parameter estimation</atitle><jtitle>Ionics</jtitle><stitle>Ionics</stitle><date>2025</date><risdate>2025</risdate><volume>31</volume><issue>1</issue><spage>703</spage><epage>741</epage><pages>703-741</pages><issn>0947-7047</issn><eissn>1862-0760</eissn><abstract>Proton exchange membrane fuel cells (PEMFCs) are powered by hydrogen energy, which is valued for its renewable, safe, and efficient characteristics, and are therefore critical in sustainable electricity generation through hydrogen electrochemical conversion. Parameter estimation in PEMFCs is a challenging but critical task, since accurate modeling is directly related to cell performance optimization and reliable energy output under different operational conditions. To improve parameter estimation accuracy, a cooperative strategy-based differential evolution (CS-DE) algorithm was developed to minimize the sum of squared errors (SSE) between experimental and simulated PEMFC voltage data for multiple BCS 500-W PEM, BCS 250-W PEM, Nedstack PS6 PEM, 500W SR-12 PEM, H-12 PEM, and HORIZON 500W PEMFC models. The CS-DE algorithm was benchmarked against standard differential evolution (DE) and other conventional methods on six commercial PEMFC types, resulting in a 15% reduction in SSE and an average improvement of 12% in estimation accuracy. These results demonstrate the robustness and adaptability of CS-DE for complex PEMFC modeling tasks.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11581-024-05963-x</doi><tpages>39</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-7047
ispartof Ionics, 2025, Vol.31 (1), p.703-741
issn 0947-7047
1862-0760
language eng
recordid cdi_proquest_journals_3158667162
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Algorithms
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Electrochemistry
Energy Storage
Evolutionary algorithms
Evolutionary computation
Modelling
Optical and Electronic Materials
Parameter estimation
Parameter robustness
Proton exchange membrane fuel cells
Renewable and Green Energy
Task complexity
title A cooperative strategy-based differential evolution algorithm for robust PEM fuel cell parameter estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A31%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20cooperative%20strategy-based%20differential%20evolution%20algorithm%20for%20robust%20PEM%20fuel%20cell%20parameter%20estimation&rft.jtitle=Ionics&rft.au=Jangir,%20Pradeep&rft.date=2025&rft.volume=31&rft.issue=1&rft.spage=703&rft.epage=741&rft.pages=703-741&rft.issn=0947-7047&rft.eissn=1862-0760&rft_id=info:doi/10.1007/s11581-024-05963-x&rft_dat=%3Cproquest_cross%3E3158667162%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3158667162&rft_id=info:pmid/&rfr_iscdi=true