Research on thermal compression behavior and microstructural evolution mechanism of 2A14 aluminum alloy
The hot deformation behavior was probed through hot compression experiments with a range of temperature between 250 °C and 470 °C and strain rates ranging from 0.01 to 5 s −1 . Simultaneously, the microstructural evolution was revealed employing electron backscatter diffraction (EBSD). Based on the...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2025, Vol.60 (4), p.2079-2094 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2094 |
---|---|
container_issue | 4 |
container_start_page | 2079 |
container_title | Journal of materials science |
container_volume | 60 |
creator | Jiao, Yongxing Gong, Yiming Qi, Qiangqiang Zhou, Fengwei Gao, Yifan |
description | The hot deformation behavior was probed through hot compression experiments with a range of temperature between 250 °C and 470 °C and strain rates ranging from 0.01 to 5 s
−1
. Simultaneously, the microstructural evolution was revealed employing electron backscatter diffraction (EBSD). Based on the hyperbolic sine function and dynamic material model, the constitutive equation was established and the critical conditions for dynamic recrystallization (DRX) were determined. The results indicate that the Z parameter (parameter temperature and strain rate compensation factor) exerts a notable influence on the hot deformation behavior and microstructure evolution. At higher lnZ values (low temperature or high strain rate) situations, the DRX volume percentage is relatively low. As ln Z decreases, the DRX process accelerates, leading to a significant rise in the fraction of high-angle grain boundaries (HAGB). Meanwhile, the main DRX mode of alloys driven by discontinuous dynamic recrystallization (DDRX), accompanied by continuous dynamic recrystallization (CDRX). The alloy undergoes complete DRX while subjected to high temperatures and rapid strain rates (450 °C,
ε
˙
=
5
s
-
1
, ln
Z
= 23.75). With increase in deformation, the texture along grain boundaries transitions gradually from the
P
{001} orientation to the Brass {011} and
S
{123} orientations.
Graphical abstract |
doi_str_mv | 10.1007/s10853-024-10552-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3156881050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3156881050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-f81f0848fc45e05c9502cd3d5e83162651a31bd5dfecaa3d6c43cd1061e971543</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFb_gKcFz9GZ_UjSYyl-QUEQPS_bzaZJyWbrblLov3djBW-eZhieeYd5CLlFuEeA4iEilJJnwESGICXLxBmZoSx4Jkrg52QGwFjGRI6X5CrGHQDIguGMbN9ttDqYhvqeDo0NTnfUeLcPNsY2zTa20YfWB6r7irrWBB-HMJphDAm0B9-Nw4Q5axrdt9FRX1O2REF1N7q2H11qOn-8Jhe17qK9-a1z8vn0-LF6ydZvz6-r5TozDGDI6hJrKEVZGyEtSLOQwEzFK2lLjjnLJWqOm0pWtTVa8yo3gpsKIUe7KFAKPid3p9x98F-jjYPa-TH06aTiKPOyTHogUexETe_EYGu1D63T4agQ1CRUnYSqJFT9CFVTND8txQT3Wxv-ov_Z-gYH7nm3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3156881050</pqid></control><display><type>article</type><title>Research on thermal compression behavior and microstructural evolution mechanism of 2A14 aluminum alloy</title><source>SpringerLink Journals - AutoHoldings</source><creator>Jiao, Yongxing ; Gong, Yiming ; Qi, Qiangqiang ; Zhou, Fengwei ; Gao, Yifan</creator><creatorcontrib>Jiao, Yongxing ; Gong, Yiming ; Qi, Qiangqiang ; Zhou, Fengwei ; Gao, Yifan</creatorcontrib><description>The hot deformation behavior was probed through hot compression experiments with a range of temperature between 250 °C and 470 °C and strain rates ranging from 0.01 to 5 s
−1
. Simultaneously, the microstructural evolution was revealed employing electron backscatter diffraction (EBSD). Based on the hyperbolic sine function and dynamic material model, the constitutive equation was established and the critical conditions for dynamic recrystallization (DRX) were determined. The results indicate that the Z parameter (parameter temperature and strain rate compensation factor) exerts a notable influence on the hot deformation behavior and microstructure evolution. At higher lnZ values (low temperature or high strain rate) situations, the DRX volume percentage is relatively low. As ln Z decreases, the DRX process accelerates, leading to a significant rise in the fraction of high-angle grain boundaries (HAGB). Meanwhile, the main DRX mode of alloys driven by discontinuous dynamic recrystallization (DDRX), accompanied by continuous dynamic recrystallization (CDRX). The alloy undergoes complete DRX while subjected to high temperatures and rapid strain rates (450 °C,
ε
˙
=
5
s
-
1
, ln
Z
= 23.75). With increase in deformation, the texture along grain boundaries transitions gradually from the
P
{001} < 122 > orientation to the Brass {011} < 211 > and
S
{123} < 634 > orientations.
Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-024-10552-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Aluminum base alloys ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Constitutive equations ; Constitutive relationships ; Crystallography and Scattering Methods ; Deformation ; Dynamic recrystallization ; Electron back scatter ; Evolution ; Grain boundaries ; Heat resistant alloys ; High strain rate ; High temperature ; Hot pressing ; Hyperbolic functions ; Low temperature ; Materials Science ; Metals & Corrosion ; Microstructure ; Parameters ; Polymer Sciences ; Solid Mechanics ; Temperature</subject><ispartof>Journal of materials science, 2025, Vol.60 (4), p.2079-2094</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Jan 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-f81f0848fc45e05c9502cd3d5e83162651a31bd5dfecaa3d6c43cd1061e971543</cites><orcidid>0000-0002-9219-5567</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-024-10552-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-024-10552-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jiao, Yongxing</creatorcontrib><creatorcontrib>Gong, Yiming</creatorcontrib><creatorcontrib>Qi, Qiangqiang</creatorcontrib><creatorcontrib>Zhou, Fengwei</creatorcontrib><creatorcontrib>Gao, Yifan</creatorcontrib><title>Research on thermal compression behavior and microstructural evolution mechanism of 2A14 aluminum alloy</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The hot deformation behavior was probed through hot compression experiments with a range of temperature between 250 °C and 470 °C and strain rates ranging from 0.01 to 5 s
−1
. Simultaneously, the microstructural evolution was revealed employing electron backscatter diffraction (EBSD). Based on the hyperbolic sine function and dynamic material model, the constitutive equation was established and the critical conditions for dynamic recrystallization (DRX) were determined. The results indicate that the Z parameter (parameter temperature and strain rate compensation factor) exerts a notable influence on the hot deformation behavior and microstructure evolution. At higher lnZ values (low temperature or high strain rate) situations, the DRX volume percentage is relatively low. As ln Z decreases, the DRX process accelerates, leading to a significant rise in the fraction of high-angle grain boundaries (HAGB). Meanwhile, the main DRX mode of alloys driven by discontinuous dynamic recrystallization (DDRX), accompanied by continuous dynamic recrystallization (CDRX). The alloy undergoes complete DRX while subjected to high temperatures and rapid strain rates (450 °C,
ε
˙
=
5
s
-
1
, ln
Z
= 23.75). With increase in deformation, the texture along grain boundaries transitions gradually from the
P
{001} < 122 > orientation to the Brass {011} < 211 > and
S
{123} < 634 > orientations.
Graphical abstract</description><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Constitutive equations</subject><subject>Constitutive relationships</subject><subject>Crystallography and Scattering Methods</subject><subject>Deformation</subject><subject>Dynamic recrystallization</subject><subject>Electron back scatter</subject><subject>Evolution</subject><subject>Grain boundaries</subject><subject>Heat resistant alloys</subject><subject>High strain rate</subject><subject>High temperature</subject><subject>Hot pressing</subject><subject>Hyperbolic functions</subject><subject>Low temperature</subject><subject>Materials Science</subject><subject>Metals & Corrosion</subject><subject>Microstructure</subject><subject>Parameters</subject><subject>Polymer Sciences</subject><subject>Solid Mechanics</subject><subject>Temperature</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFb_gKcFz9GZ_UjSYyl-QUEQPS_bzaZJyWbrblLov3djBW-eZhieeYd5CLlFuEeA4iEilJJnwESGICXLxBmZoSx4Jkrg52QGwFjGRI6X5CrGHQDIguGMbN9ttDqYhvqeDo0NTnfUeLcPNsY2zTa20YfWB6r7irrWBB-HMJphDAm0B9-Nw4Q5axrdt9FRX1O2REF1N7q2H11qOn-8Jhe17qK9-a1z8vn0-LF6ydZvz6-r5TozDGDI6hJrKEVZGyEtSLOQwEzFK2lLjjnLJWqOm0pWtTVa8yo3gpsKIUe7KFAKPid3p9x98F-jjYPa-TH06aTiKPOyTHogUexETe_EYGu1D63T4agQ1CRUnYSqJFT9CFVTND8txQT3Wxv-ov_Z-gYH7nm3</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Jiao, Yongxing</creator><creator>Gong, Yiming</creator><creator>Qi, Qiangqiang</creator><creator>Zhou, Fengwei</creator><creator>Gao, Yifan</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9219-5567</orcidid></search><sort><creationdate>2025</creationdate><title>Research on thermal compression behavior and microstructural evolution mechanism of 2A14 aluminum alloy</title><author>Jiao, Yongxing ; Gong, Yiming ; Qi, Qiangqiang ; Zhou, Fengwei ; Gao, Yifan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-f81f0848fc45e05c9502cd3d5e83162651a31bd5dfecaa3d6c43cd1061e971543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Constitutive equations</topic><topic>Constitutive relationships</topic><topic>Crystallography and Scattering Methods</topic><topic>Deformation</topic><topic>Dynamic recrystallization</topic><topic>Electron back scatter</topic><topic>Evolution</topic><topic>Grain boundaries</topic><topic>Heat resistant alloys</topic><topic>High strain rate</topic><topic>High temperature</topic><topic>Hot pressing</topic><topic>Hyperbolic functions</topic><topic>Low temperature</topic><topic>Materials Science</topic><topic>Metals & Corrosion</topic><topic>Microstructure</topic><topic>Parameters</topic><topic>Polymer Sciences</topic><topic>Solid Mechanics</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiao, Yongxing</creatorcontrib><creatorcontrib>Gong, Yiming</creatorcontrib><creatorcontrib>Qi, Qiangqiang</creatorcontrib><creatorcontrib>Zhou, Fengwei</creatorcontrib><creatorcontrib>Gao, Yifan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiao, Yongxing</au><au>Gong, Yiming</au><au>Qi, Qiangqiang</au><au>Zhou, Fengwei</au><au>Gao, Yifan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on thermal compression behavior and microstructural evolution mechanism of 2A14 aluminum alloy</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2025</date><risdate>2025</risdate><volume>60</volume><issue>4</issue><spage>2079</spage><epage>2094</epage><pages>2079-2094</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The hot deformation behavior was probed through hot compression experiments with a range of temperature between 250 °C and 470 °C and strain rates ranging from 0.01 to 5 s
−1
. Simultaneously, the microstructural evolution was revealed employing electron backscatter diffraction (EBSD). Based on the hyperbolic sine function and dynamic material model, the constitutive equation was established and the critical conditions for dynamic recrystallization (DRX) were determined. The results indicate that the Z parameter (parameter temperature and strain rate compensation factor) exerts a notable influence on the hot deformation behavior and microstructure evolution. At higher lnZ values (low temperature or high strain rate) situations, the DRX volume percentage is relatively low. As ln Z decreases, the DRX process accelerates, leading to a significant rise in the fraction of high-angle grain boundaries (HAGB). Meanwhile, the main DRX mode of alloys driven by discontinuous dynamic recrystallization (DDRX), accompanied by continuous dynamic recrystallization (CDRX). The alloy undergoes complete DRX while subjected to high temperatures and rapid strain rates (450 °C,
ε
˙
=
5
s
-
1
, ln
Z
= 23.75). With increase in deformation, the texture along grain boundaries transitions gradually from the
P
{001} < 122 > orientation to the Brass {011} < 211 > and
S
{123} < 634 > orientations.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-024-10552-4</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9219-5567</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2025, Vol.60 (4), p.2079-2094 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_3156881050 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloys Aluminum base alloys Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Constitutive equations Constitutive relationships Crystallography and Scattering Methods Deformation Dynamic recrystallization Electron back scatter Evolution Grain boundaries Heat resistant alloys High strain rate High temperature Hot pressing Hyperbolic functions Low temperature Materials Science Metals & Corrosion Microstructure Parameters Polymer Sciences Solid Mechanics Temperature |
title | Research on thermal compression behavior and microstructural evolution mechanism of 2A14 aluminum alloy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A10%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20thermal%20compression%20behavior%20and%20microstructural%20evolution%20mechanism%20of%202A14%20aluminum%20alloy&rft.jtitle=Journal%20of%20materials%20science&rft.au=Jiao,%20Yongxing&rft.date=2025&rft.volume=60&rft.issue=4&rft.spage=2079&rft.epage=2094&rft.pages=2079-2094&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-024-10552-4&rft_dat=%3Cproquest_cross%3E3156881050%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3156881050&rft_id=info:pmid/&rfr_iscdi=true |