Debiased inverse propensity score weighting for estimation of average treatment effects with high-dimensional confounders

We consider estimation of average treatment effects given observational data with high-dimensional pretreatment variables. Existing methods for this problem typically assume some form of sparsity for the regression functions. In this work, we introduce a debiased inverse propensity score weighting (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2024-10, Vol.52 (5), p.1978
Hauptverfasser: Wang, Yuhao, Shah, Rajen D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 1978
container_title The Annals of statistics
container_volume 52
creator Wang, Yuhao
Shah, Rajen D.
description We consider estimation of average treatment effects given observational data with high-dimensional pretreatment variables. Existing methods for this problem typically assume some form of sparsity for the regression functions. In this work, we introduce a debiased inverse propensity score weighting (DIPW) scheme for average treatment effect estimation that delivers √ nconsistent estimates when the propensity score follows a sparse logistic regression model; the outcome regression functions are permitted to be arbitrarily complex. We further demonstrate how confidence intervals centred on our estimates may be constructed. Our theoretical results quantify the price to pay for permitting the regression functions to be unestimable, which shows up as an inflation of the variance of the estimator compared to the semiparametric efficient variance by a constant factor, under mild conditions. We also show that when outcome regressions can be estimated consistently, our estimator achieves semiparametric efficiency. As our results accommodate arbitrary outcome regression functions, averages of transformed responses under each treatment may also be estimated at the √ n rate. Thus, for example, the variances of the potential outcomes may be estimated. We discuss extensions to estimating linear projections of the heterogeneous treatment effect function and explain how propensity score models with more general link functions may be handled within our framework. An R package dipw implementing our methodology is available on CRAN.
doi_str_mv 10.1214/24-AOS2409
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3156807740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3156807740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c184t-554d1014a0a1b60ba229db609804238797f1ea53a4457cba533a9457495a480e3</originalsourceid><addsrcrecordid>eNotUE1PAjEUbIwmInrxFzTxZrL6-rW7PRL8TEg4qOdNd_cVSmCLbZHw7y2B05vDzLyZIeSewRPjTD5zWUzmX1yCviAjzsq6qHVZXpIRgIZCiVJek5sYVwCgtBQjcnjB1pmIPXXDH4aIdBv8Fofo0oHGzgeke3SLZXLDglofKMbkNiY5P1Bvqckas0CaApq0wSFRtBa7FOnepSVdZmXRu83Rzw9mTTs_WL8b-vzpllxZs454d75j8vP2-j39KGbz98_pZFZ0rJapUEr2DJg0YFhbQms4130GugbJRV3pyjI0ShgpVdW1GQmjM5RaGVkDijF5OPnmYr-7HL9Z-V3IYWIjmCprqCoJmfV4YnXBxxjQNtuQe4ZDw6A5Tttw2ZynFf-idG0r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3156807740</pqid></control><display><type>article</type><title>Debiased inverse propensity score weighting for estimation of average treatment effects with high-dimensional confounders</title><source>Project Euclid Complete</source><creator>Wang, Yuhao ; Shah, Rajen D.</creator><creatorcontrib>Wang, Yuhao ; Shah, Rajen D.</creatorcontrib><description>We consider estimation of average treatment effects given observational data with high-dimensional pretreatment variables. Existing methods for this problem typically assume some form of sparsity for the regression functions. In this work, we introduce a debiased inverse propensity score weighting (DIPW) scheme for average treatment effect estimation that delivers √ nconsistent estimates when the propensity score follows a sparse logistic regression model; the outcome regression functions are permitted to be arbitrarily complex. We further demonstrate how confidence intervals centred on our estimates may be constructed. Our theoretical results quantify the price to pay for permitting the regression functions to be unestimable, which shows up as an inflation of the variance of the estimator compared to the semiparametric efficient variance by a constant factor, under mild conditions. We also show that when outcome regressions can be estimated consistently, our estimator achieves semiparametric efficiency. As our results accommodate arbitrary outcome regression functions, averages of transformed responses under each treatment may also be estimated at the √ n rate. Thus, for example, the variances of the potential outcomes may be estimated. We discuss extensions to estimating linear projections of the heterogeneous treatment effect function and explain how propensity score models with more general link functions may be handled within our framework. An R package dipw implementing our methodology is available on CRAN.</description><identifier>ISSN: 0090-5364</identifier><identifier>EISSN: 2168-8966</identifier><identifier>DOI: 10.1214/24-AOS2409</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Asymptotic methods ; Confidence intervals ; Estimates ; Estimating techniques ; Estimation ; Mathematical functions ; Observational weighting ; Regression analysis ; Regression models ; Statistical analysis ; Variance ; Weighting</subject><ispartof>The Annals of statistics, 2024-10, Vol.52 (5), p.1978</ispartof><rights>Copyright Institute of Mathematical Statistics Oct 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c184t-554d1014a0a1b60ba229db609804238797f1ea53a4457cba533a9457495a480e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Yuhao</creatorcontrib><creatorcontrib>Shah, Rajen D.</creatorcontrib><title>Debiased inverse propensity score weighting for estimation of average treatment effects with high-dimensional confounders</title><title>The Annals of statistics</title><description>We consider estimation of average treatment effects given observational data with high-dimensional pretreatment variables. Existing methods for this problem typically assume some form of sparsity for the regression functions. In this work, we introduce a debiased inverse propensity score weighting (DIPW) scheme for average treatment effect estimation that delivers √ nconsistent estimates when the propensity score follows a sparse logistic regression model; the outcome regression functions are permitted to be arbitrarily complex. We further demonstrate how confidence intervals centred on our estimates may be constructed. Our theoretical results quantify the price to pay for permitting the regression functions to be unestimable, which shows up as an inflation of the variance of the estimator compared to the semiparametric efficient variance by a constant factor, under mild conditions. We also show that when outcome regressions can be estimated consistently, our estimator achieves semiparametric efficiency. As our results accommodate arbitrary outcome regression functions, averages of transformed responses under each treatment may also be estimated at the √ n rate. Thus, for example, the variances of the potential outcomes may be estimated. We discuss extensions to estimating linear projections of the heterogeneous treatment effect function and explain how propensity score models with more general link functions may be handled within our framework. An R package dipw implementing our methodology is available on CRAN.</description><subject>Asymptotic methods</subject><subject>Confidence intervals</subject><subject>Estimates</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Mathematical functions</subject><subject>Observational weighting</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Variance</subject><subject>Weighting</subject><issn>0090-5364</issn><issn>2168-8966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotUE1PAjEUbIwmInrxFzTxZrL6-rW7PRL8TEg4qOdNd_cVSmCLbZHw7y2B05vDzLyZIeSewRPjTD5zWUzmX1yCviAjzsq6qHVZXpIRgIZCiVJek5sYVwCgtBQjcnjB1pmIPXXDH4aIdBv8Fofo0oHGzgeke3SLZXLDglofKMbkNiY5P1Bvqckas0CaApq0wSFRtBa7FOnepSVdZmXRu83Rzw9mTTs_WL8b-vzpllxZs454d75j8vP2-j39KGbz98_pZFZ0rJapUEr2DJg0YFhbQms4130GugbJRV3pyjI0ShgpVdW1GQmjM5RaGVkDijF5OPnmYr-7HL9Z-V3IYWIjmCprqCoJmfV4YnXBxxjQNtuQe4ZDw6A5Tttw2ZynFf-idG0r</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Wang, Yuhao</creator><creator>Shah, Rajen D.</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>20241001</creationdate><title>Debiased inverse propensity score weighting for estimation of average treatment effects with high-dimensional confounders</title><author>Wang, Yuhao ; Shah, Rajen D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c184t-554d1014a0a1b60ba229db609804238797f1ea53a4457cba533a9457495a480e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Asymptotic methods</topic><topic>Confidence intervals</topic><topic>Estimates</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Mathematical functions</topic><topic>Observational weighting</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Variance</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuhao</creatorcontrib><creatorcontrib>Shah, Rajen D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>The Annals of statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yuhao</au><au>Shah, Rajen D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Debiased inverse propensity score weighting for estimation of average treatment effects with high-dimensional confounders</atitle><jtitle>The Annals of statistics</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>52</volume><issue>5</issue><spage>1978</spage><pages>1978-</pages><issn>0090-5364</issn><eissn>2168-8966</eissn><abstract>We consider estimation of average treatment effects given observational data with high-dimensional pretreatment variables. Existing methods for this problem typically assume some form of sparsity for the regression functions. In this work, we introduce a debiased inverse propensity score weighting (DIPW) scheme for average treatment effect estimation that delivers √ nconsistent estimates when the propensity score follows a sparse logistic regression model; the outcome regression functions are permitted to be arbitrarily complex. We further demonstrate how confidence intervals centred on our estimates may be constructed. Our theoretical results quantify the price to pay for permitting the regression functions to be unestimable, which shows up as an inflation of the variance of the estimator compared to the semiparametric efficient variance by a constant factor, under mild conditions. We also show that when outcome regressions can be estimated consistently, our estimator achieves semiparametric efficiency. As our results accommodate arbitrary outcome regression functions, averages of transformed responses under each treatment may also be estimated at the √ n rate. Thus, for example, the variances of the potential outcomes may be estimated. We discuss extensions to estimating linear projections of the heterogeneous treatment effect function and explain how propensity score models with more general link functions may be handled within our framework. An R package dipw implementing our methodology is available on CRAN.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/24-AOS2409</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0090-5364
ispartof The Annals of statistics, 2024-10, Vol.52 (5), p.1978
issn 0090-5364
2168-8966
language eng
recordid cdi_proquest_journals_3156807740
source Project Euclid Complete
subjects Asymptotic methods
Confidence intervals
Estimates
Estimating techniques
Estimation
Mathematical functions
Observational weighting
Regression analysis
Regression models
Statistical analysis
Variance
Weighting
title Debiased inverse propensity score weighting for estimation of average treatment effects with high-dimensional confounders
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A17%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Debiased%20inverse%20propensity%20score%20weighting%20for%20estimation%20of%20average%20treatment%20effects%20with%20high-dimensional%20confounders&rft.jtitle=The%20Annals%20of%20statistics&rft.au=Wang,%20Yuhao&rft.date=2024-10-01&rft.volume=52&rft.issue=5&rft.spage=1978&rft.pages=1978-&rft.issn=0090-5364&rft.eissn=2168-8966&rft_id=info:doi/10.1214/24-AOS2409&rft_dat=%3Cproquest_cross%3E3156807740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3156807740&rft_id=info:pmid/&rfr_iscdi=true