Intelligent Sleep Apnea Detection by Advanced ML Using Single-Lead EEG Signal Data

Obstructive sleep apnea (OSA) is a common sleep disorder that causes repeated disruptions in breathing during sleep. The traditional method to diagnose OSA is polysomnography, which is complex and time-consuming and requires an overnight stay in a sleep lab. However, electroencephalography (EEG) sen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2025-01, Vol.25 (2), p.3859-3866
Hauptverfasser: Khan, Atiya, Biswas, Saroj Kr, Chunka, Chukhu, Baruah, Barnana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3866
container_issue 2
container_start_page 3859
container_title IEEE sensors journal
container_volume 25
creator Khan, Atiya
Biswas, Saroj Kr
Chunka, Chukhu
Baruah, Barnana
description Obstructive sleep apnea (OSA) is a common sleep disorder that causes repeated disruptions in breathing during sleep. The traditional method to diagnose OSA is polysomnography, which is complex and time-consuming and requires an overnight stay in a sleep lab. However, electroencephalography (EEG) sensor-based methods offer the possibility of simpler, in-home testing, improving accessibility and patient comfort. This article proposes an intelligent expert system for the OSA detection (IESOSAD) model. The proposed model aims to efficiently detect apnea utilizing single-lead EEG data and ensemble learning algorithms. The IESOSAD model begins by analyzing the C4-A1 channel of the EEG signal and uses discrete wavelet transform (DWT) with a Daubechies-8 wavelet (db8) to decompose it into subbands. Statistical features (Sfs) are then extracted from these subbands to create a dataset for further analysis. Furthermore, the dataset undergoes preprocessing with a Gaussian filter for feature smoothing and isolation forest (IF) for anomaly detection, leading to enhanced data quality. Subsequently, the artificial bee colony (ABC) feature selection algorithm is applied to eliminate irrelevant features. The final stage of the IESOSAD model involves classification using an Extremely Randomized Trees classifier. The IESOSAD model's performance is rigorously evaluated under holdout, tenfold, and fivefold cross-validation (CV) using a comprehensive set of metrics, including precision, recall, accuracy, {F}1 -score, and ROC AUC curve. The results demonstrate that IESOSAD achieves the highest accuracy of 88.12%, surpassing other state-of-the-art machine and ensemble learning algorithms. Moreover, IESOSAD has outperformed benchmark OSA detection models by a significant margin, facilitating a more streamlined and reliable OSA detection system.
doi_str_mv 10.1109/JSEN.2024.3506057
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3155820584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10778217</ieee_id><sourcerecordid>3155820584</sourcerecordid><originalsourceid>FETCH-LOGICAL-c914-3e06c722058ca8ffe0278a83a548ecfed7b20c79a9caa6188e7271c9ff1d83c83</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRsFZ_gOBiwHXqPDKdybK0sVaigq3gbrid3CkpMYmZVOi_N6Eu3NwHnHO49yPklrMJ5yx5eF6nrxPBRDyRik2Z0mdkxJUyEdexOR9myaJY6s9LchXCnjGeaKVH5H1VdViWxQ6rjq5LxIbOmgqBLrBD1xV1RbdHOst_oHKY05eMfoSi2tF1X0qMMoScpumy33cVlHQBHVyTCw9lwJu_Piabx3Qzf4qyt-VqPssil_A4ksimTgvBlHFgvEcmtAEjQcUGncdcbwVzOoHEAUy5MaiF5i7xnudGOiPH5P4U27T19wFDZ_f1oe2PCFYOnw_Jca_iJ5Vr6xBa9LZpiy9oj5YzO5CzAzk7kLN_5HrP3clTIOI_vdZGcC1_AYTUaIM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3155820584</pqid></control><display><type>article</type><title>Intelligent Sleep Apnea Detection by Advanced ML Using Single-Lead EEG Signal Data</title><source>IEEE Electronic Library (IEL)</source><creator>Khan, Atiya ; Biswas, Saroj Kr ; Chunka, Chukhu ; Baruah, Barnana</creator><creatorcontrib>Khan, Atiya ; Biswas, Saroj Kr ; Chunka, Chukhu ; Baruah, Barnana</creatorcontrib><description>Obstructive sleep apnea (OSA) is a common sleep disorder that causes repeated disruptions in breathing during sleep. The traditional method to diagnose OSA is polysomnography, which is complex and time-consuming and requires an overnight stay in a sleep lab. However, electroencephalography (EEG) sensor-based methods offer the possibility of simpler, in-home testing, improving accessibility and patient comfort. This article proposes an intelligent expert system for the OSA detection (IESOSAD) model. The proposed model aims to efficiently detect apnea utilizing single-lead EEG data and ensemble learning algorithms. The IESOSAD model begins by analyzing the C4-A1 channel of the EEG signal and uses discrete wavelet transform (DWT) with a Daubechies-8 wavelet (db8) to decompose it into subbands. Statistical features (Sfs) are then extracted from these subbands to create a dataset for further analysis. Furthermore, the dataset undergoes preprocessing with a Gaussian filter for feature smoothing and isolation forest (IF) for anomaly detection, leading to enhanced data quality. Subsequently, the artificial bee colony (ABC) feature selection algorithm is applied to eliminate irrelevant features. The final stage of the IESOSAD model involves classification using an Extremely Randomized Trees classifier. The IESOSAD model's performance is rigorously evaluated under holdout, tenfold, and fivefold cross-validation (CV) using a comprehensive set of metrics, including precision, recall, accuracy, &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{F}1 &lt;/tex-math&gt;&lt;/inline-formula&gt;-score, and ROC AUC curve. The results demonstrate that IESOSAD achieves the highest accuracy of 88.12%, surpassing other state-of-the-art machine and ensemble learning algorithms. Moreover, IESOSAD has outperformed benchmark OSA detection models by a significant margin, facilitating a more streamlined and reliable OSA detection system.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2024.3506057</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Algorithms ; Anomalies ; Artificial bee colony (ABC) ; Brain modeling ; Classification algorithms ; Data models ; Data smoothing ; Datasets ; Discrete Wavelet Transform ; discrete wavelet transform (DWT) ; Discrete wavelet transforms ; Electrocardiography ; Electroencephalography ; electroencephalography (EEG) ; Ensemble learning ; Expert systems ; Feature extraction ; Gaussian filter ; isolation forest (IF) ; Machine learning ; obstructive sleep apnea (OSA) ; Sleep apnea ; Support vector machines ; Swarm intelligence ; Wavelet analysis ; Wavelet transforms</subject><ispartof>IEEE sensors journal, 2025-01, Vol.25 (2), p.3859-3866</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c914-3e06c722058ca8ffe0278a83a548ecfed7b20c79a9caa6188e7271c9ff1d83c83</cites><orcidid>0000-0002-8854-7152 ; 0009-0004-4819-8623 ; 0000-0003-2962-4338 ; 0000-0003-0690-0061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10778217$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10778217$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Khan, Atiya</creatorcontrib><creatorcontrib>Biswas, Saroj Kr</creatorcontrib><creatorcontrib>Chunka, Chukhu</creatorcontrib><creatorcontrib>Baruah, Barnana</creatorcontrib><title>Intelligent Sleep Apnea Detection by Advanced ML Using Single-Lead EEG Signal Data</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Obstructive sleep apnea (OSA) is a common sleep disorder that causes repeated disruptions in breathing during sleep. The traditional method to diagnose OSA is polysomnography, which is complex and time-consuming and requires an overnight stay in a sleep lab. However, electroencephalography (EEG) sensor-based methods offer the possibility of simpler, in-home testing, improving accessibility and patient comfort. This article proposes an intelligent expert system for the OSA detection (IESOSAD) model. The proposed model aims to efficiently detect apnea utilizing single-lead EEG data and ensemble learning algorithms. The IESOSAD model begins by analyzing the C4-A1 channel of the EEG signal and uses discrete wavelet transform (DWT) with a Daubechies-8 wavelet (db8) to decompose it into subbands. Statistical features (Sfs) are then extracted from these subbands to create a dataset for further analysis. Furthermore, the dataset undergoes preprocessing with a Gaussian filter for feature smoothing and isolation forest (IF) for anomaly detection, leading to enhanced data quality. Subsequently, the artificial bee colony (ABC) feature selection algorithm is applied to eliminate irrelevant features. The final stage of the IESOSAD model involves classification using an Extremely Randomized Trees classifier. The IESOSAD model's performance is rigorously evaluated under holdout, tenfold, and fivefold cross-validation (CV) using a comprehensive set of metrics, including precision, recall, accuracy, &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{F}1 &lt;/tex-math&gt;&lt;/inline-formula&gt;-score, and ROC AUC curve. The results demonstrate that IESOSAD achieves the highest accuracy of 88.12%, surpassing other state-of-the-art machine and ensemble learning algorithms. Moreover, IESOSAD has outperformed benchmark OSA detection models by a significant margin, facilitating a more streamlined and reliable OSA detection system.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Anomalies</subject><subject>Artificial bee colony (ABC)</subject><subject>Brain modeling</subject><subject>Classification algorithms</subject><subject>Data models</subject><subject>Data smoothing</subject><subject>Datasets</subject><subject>Discrete Wavelet Transform</subject><subject>discrete wavelet transform (DWT)</subject><subject>Discrete wavelet transforms</subject><subject>Electrocardiography</subject><subject>Electroencephalography</subject><subject>electroencephalography (EEG)</subject><subject>Ensemble learning</subject><subject>Expert systems</subject><subject>Feature extraction</subject><subject>Gaussian filter</subject><subject>isolation forest (IF)</subject><subject>Machine learning</subject><subject>obstructive sleep apnea (OSA)</subject><subject>Sleep apnea</subject><subject>Support vector machines</subject><subject>Swarm intelligence</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkEtLw0AUhQdRsFZ_gOBiwHXqPDKdybK0sVaigq3gbrid3CkpMYmZVOi_N6Eu3NwHnHO49yPklrMJ5yx5eF6nrxPBRDyRik2Z0mdkxJUyEdexOR9myaJY6s9LchXCnjGeaKVH5H1VdViWxQ6rjq5LxIbOmgqBLrBD1xV1RbdHOst_oHKY05eMfoSi2tF1X0qMMoScpumy33cVlHQBHVyTCw9lwJu_Piabx3Qzf4qyt-VqPssil_A4ksimTgvBlHFgvEcmtAEjQcUGncdcbwVzOoHEAUy5MaiF5i7xnudGOiPH5P4U27T19wFDZ_f1oe2PCFYOnw_Jca_iJ5Vr6xBa9LZpiy9oj5YzO5CzAzk7kLN_5HrP3clTIOI_vdZGcC1_AYTUaIM</recordid><startdate>20250115</startdate><enddate>20250115</enddate><creator>Khan, Atiya</creator><creator>Biswas, Saroj Kr</creator><creator>Chunka, Chukhu</creator><creator>Baruah, Barnana</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8854-7152</orcidid><orcidid>https://orcid.org/0009-0004-4819-8623</orcidid><orcidid>https://orcid.org/0000-0003-2962-4338</orcidid><orcidid>https://orcid.org/0000-0003-0690-0061</orcidid></search><sort><creationdate>20250115</creationdate><title>Intelligent Sleep Apnea Detection by Advanced ML Using Single-Lead EEG Signal Data</title><author>Khan, Atiya ; Biswas, Saroj Kr ; Chunka, Chukhu ; Baruah, Barnana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c914-3e06c722058ca8ffe0278a83a548ecfed7b20c79a9caa6188e7271c9ff1d83c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Anomalies</topic><topic>Artificial bee colony (ABC)</topic><topic>Brain modeling</topic><topic>Classification algorithms</topic><topic>Data models</topic><topic>Data smoothing</topic><topic>Datasets</topic><topic>Discrete Wavelet Transform</topic><topic>discrete wavelet transform (DWT)</topic><topic>Discrete wavelet transforms</topic><topic>Electrocardiography</topic><topic>Electroencephalography</topic><topic>electroencephalography (EEG)</topic><topic>Ensemble learning</topic><topic>Expert systems</topic><topic>Feature extraction</topic><topic>Gaussian filter</topic><topic>isolation forest (IF)</topic><topic>Machine learning</topic><topic>obstructive sleep apnea (OSA)</topic><topic>Sleep apnea</topic><topic>Support vector machines</topic><topic>Swarm intelligence</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Atiya</creatorcontrib><creatorcontrib>Biswas, Saroj Kr</creatorcontrib><creatorcontrib>Chunka, Chukhu</creatorcontrib><creatorcontrib>Baruah, Barnana</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Khan, Atiya</au><au>Biswas, Saroj Kr</au><au>Chunka, Chukhu</au><au>Baruah, Barnana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Sleep Apnea Detection by Advanced ML Using Single-Lead EEG Signal Data</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2025-01-15</date><risdate>2025</risdate><volume>25</volume><issue>2</issue><spage>3859</spage><epage>3866</epage><pages>3859-3866</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Obstructive sleep apnea (OSA) is a common sleep disorder that causes repeated disruptions in breathing during sleep. The traditional method to diagnose OSA is polysomnography, which is complex and time-consuming and requires an overnight stay in a sleep lab. However, electroencephalography (EEG) sensor-based methods offer the possibility of simpler, in-home testing, improving accessibility and patient comfort. This article proposes an intelligent expert system for the OSA detection (IESOSAD) model. The proposed model aims to efficiently detect apnea utilizing single-lead EEG data and ensemble learning algorithms. The IESOSAD model begins by analyzing the C4-A1 channel of the EEG signal and uses discrete wavelet transform (DWT) with a Daubechies-8 wavelet (db8) to decompose it into subbands. Statistical features (Sfs) are then extracted from these subbands to create a dataset for further analysis. Furthermore, the dataset undergoes preprocessing with a Gaussian filter for feature smoothing and isolation forest (IF) for anomaly detection, leading to enhanced data quality. Subsequently, the artificial bee colony (ABC) feature selection algorithm is applied to eliminate irrelevant features. The final stage of the IESOSAD model involves classification using an Extremely Randomized Trees classifier. The IESOSAD model's performance is rigorously evaluated under holdout, tenfold, and fivefold cross-validation (CV) using a comprehensive set of metrics, including precision, recall, accuracy, &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;{F}1 &lt;/tex-math&gt;&lt;/inline-formula&gt;-score, and ROC AUC curve. The results demonstrate that IESOSAD achieves the highest accuracy of 88.12%, surpassing other state-of-the-art machine and ensemble learning algorithms. Moreover, IESOSAD has outperformed benchmark OSA detection models by a significant margin, facilitating a more streamlined and reliable OSA detection system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2024.3506057</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8854-7152</orcidid><orcidid>https://orcid.org/0009-0004-4819-8623</orcidid><orcidid>https://orcid.org/0000-0003-2962-4338</orcidid><orcidid>https://orcid.org/0000-0003-0690-0061</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2025-01, Vol.25 (2), p.3859-3866
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_3155820584
source IEEE Electronic Library (IEL)
subjects Accuracy
Algorithms
Anomalies
Artificial bee colony (ABC)
Brain modeling
Classification algorithms
Data models
Data smoothing
Datasets
Discrete Wavelet Transform
discrete wavelet transform (DWT)
Discrete wavelet transforms
Electrocardiography
Electroencephalography
electroencephalography (EEG)
Ensemble learning
Expert systems
Feature extraction
Gaussian filter
isolation forest (IF)
Machine learning
obstructive sleep apnea (OSA)
Sleep apnea
Support vector machines
Swarm intelligence
Wavelet analysis
Wavelet transforms
title Intelligent Sleep Apnea Detection by Advanced ML Using Single-Lead EEG Signal Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A32%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Sleep%20Apnea%20Detection%20by%20Advanced%20ML%20Using%20Single-Lead%20EEG%20Signal%20Data&rft.jtitle=IEEE%20sensors%20journal&rft.au=Khan,%20Atiya&rft.date=2025-01-15&rft.volume=25&rft.issue=2&rft.spage=3859&rft.epage=3866&rft.pages=3859-3866&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2024.3506057&rft_dat=%3Cproquest_RIE%3E3155820584%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3155820584&rft_id=info:pmid/&rft_ieee_id=10778217&rfr_iscdi=true