Enhancement of electron transfer efficiency in biofuel cell anodes using biocompatible redox-active ferritin and enzyme assemblies
Ferritin, a naturally occurring iron storage protein, plays a critical role in iron oxidation–reduction processes, making it a focus of recent research to improve the performance of biofuel cell (BFC) electrodes. The highly stable Fe III /Fe II redox pairs within the ferritin core allow for reversib...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2025-01, Vol.13 (3), p.1808-1819 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1819 |
---|---|
container_issue | 3 |
container_start_page | 1808 |
container_title | Journal of materials chemistry. A, Materials for energy and sustainability |
container_volume | 13 |
creator | Chan Jin, Gee Yu, Hye Min Jung, Eui Guk Choi, Seung-Kyum Ko, Yongmin Kwon, Cheong Hoon |
description | Ferritin, a naturally occurring iron storage protein, plays a critical role in iron oxidation–reduction processes, making it a focus of recent research to improve the performance of biofuel cell (BFC) electrodes. The highly stable Fe III /Fe II redox pairs within the ferritin core allow for reversible electron release/uptake during electrochemical sweeps, making it potentially applicable as a biocompatible redox mediator. In addition, the outermost protein nanoshell provides an effective anchoring site for strong bridging with active components. This dual functionality positions ferritin as a promising candidate for improving electron transfer efficiency in BFCs. In this study, we used a spin coating-assisted layer-by-layer assembly approach to construct and investigate multilayer structures composed of ferritin and glucose oxidase, with a particular focus on the redox properties of ferritin and its role in mediating electron transfer between enzymes and electrodes. Our results show that the strategic integration of ferritin into BFC anodes significantly enhances both current density and operational stability, representing a significant advancement in the development of high performance BFCs. The study provides critical insights into the design of stable and efficient BFCs and/or biosensors, highlighting the potential of ferritin-based assemblies to drive future innovations in bioelectrochemical technologies. These advances have significant implications for a wide range of applications, including medical devices, environmental monitoring, and renewable energy systems. |
doi_str_mv | 10.1039/D4TA06947A |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3155491803</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3155491803</sourcerecordid><originalsourceid>FETCH-LOGICAL-c184t-f5d1704908e17a6a53f056b3c3cd05e451d206d15d649352246985b5e3f0dd513</originalsourceid><addsrcrecordid>eNpFkE9LAzEQxYMoWGovfoKAN2E12SS7m2Op9Q8UvNTzkk0mmrKb1CQV69FP7paKzmUG5vfeg4fQJSU3lDB5e8fXc1JJXs9P0KQkghQ1l9Xp390052iW0oaM05CRlBP0vfRvymsYwGccLIYedI7B4xyVTxYiBmudduD1HjuPOxfsDnqsoe-x8sFAwrvk_Ovho8OwVdl1PeAIJnwWSmf3AXi0iS6PauUNBv-1HwCrlGDoegfpAp1Z1SeY_e4perlfrhePxer54WkxXxWaNjwXVhhaEy5JA7RWlRLMElF1TDNtiAAuqClJZagwFZdMlCWvZCM6ASNnjKBsiq6OvtsY3neQcrsJu-jHyJZRIbikDWEjdX2kdAwpRbDtNrpBxX1LSXuouf2vmf0Aw_1w1g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3155491803</pqid></control><display><type>article</type><title>Enhancement of electron transfer efficiency in biofuel cell anodes using biocompatible redox-active ferritin and enzyme assemblies</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Chan Jin, Gee ; Yu, Hye Min ; Jung, Eui Guk ; Choi, Seung-Kyum ; Ko, Yongmin ; Kwon, Cheong Hoon</creator><creatorcontrib>Chan Jin, Gee ; Yu, Hye Min ; Jung, Eui Guk ; Choi, Seung-Kyum ; Ko, Yongmin ; Kwon, Cheong Hoon</creatorcontrib><description>Ferritin, a naturally occurring iron storage protein, plays a critical role in iron oxidation–reduction processes, making it a focus of recent research to improve the performance of biofuel cell (BFC) electrodes. The highly stable Fe III /Fe II redox pairs within the ferritin core allow for reversible electron release/uptake during electrochemical sweeps, making it potentially applicable as a biocompatible redox mediator. In addition, the outermost protein nanoshell provides an effective anchoring site for strong bridging with active components. This dual functionality positions ferritin as a promising candidate for improving electron transfer efficiency in BFCs. In this study, we used a spin coating-assisted layer-by-layer assembly approach to construct and investigate multilayer structures composed of ferritin and glucose oxidase, with a particular focus on the redox properties of ferritin and its role in mediating electron transfer between enzymes and electrodes. Our results show that the strategic integration of ferritin into BFC anodes significantly enhances both current density and operational stability, representing a significant advancement in the development of high performance BFCs. The study provides critical insights into the design of stable and efficient BFCs and/or biosensors, highlighting the potential of ferritin-based assemblies to drive future innovations in bioelectrochemical technologies. These advances have significant implications for a wide range of applications, including medical devices, environmental monitoring, and renewable energy systems.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/D4TA06947A</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Assemblies ; Biochemical fuel cells ; Biocompatibility ; Biodiesel fuels ; Biofuels ; Biosensors ; Cell anodes ; Electrochemistry ; Electrodes ; Electron spin ; Electron transfer ; Environmental monitoring ; Ferritin ; Glucose oxidase ; Iron ; Medical equipment ; Medical innovations ; Multilayers ; Oxidation ; Performance enhancement ; Proteins ; Redox properties ; Renewable energy ; Spin coating</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2025-01, Vol.13 (3), p.1808-1819</ispartof><rights>Copyright Royal Society of Chemistry 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c184t-f5d1704908e17a6a53f056b3c3cd05e451d206d15d649352246985b5e3f0dd513</cites><orcidid>0000-0002-9516-0669 ; 0009-0001-8930-5753 ; 0000-0001-9258-3933 ; 0000-0002-1201-7825 ; 0009-0005-4053-6015 ; 0000-0003-2851-0427</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Chan Jin, Gee</creatorcontrib><creatorcontrib>Yu, Hye Min</creatorcontrib><creatorcontrib>Jung, Eui Guk</creatorcontrib><creatorcontrib>Choi, Seung-Kyum</creatorcontrib><creatorcontrib>Ko, Yongmin</creatorcontrib><creatorcontrib>Kwon, Cheong Hoon</creatorcontrib><title>Enhancement of electron transfer efficiency in biofuel cell anodes using biocompatible redox-active ferritin and enzyme assemblies</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Ferritin, a naturally occurring iron storage protein, plays a critical role in iron oxidation–reduction processes, making it a focus of recent research to improve the performance of biofuel cell (BFC) electrodes. The highly stable Fe III /Fe II redox pairs within the ferritin core allow for reversible electron release/uptake during electrochemical sweeps, making it potentially applicable as a biocompatible redox mediator. In addition, the outermost protein nanoshell provides an effective anchoring site for strong bridging with active components. This dual functionality positions ferritin as a promising candidate for improving electron transfer efficiency in BFCs. In this study, we used a spin coating-assisted layer-by-layer assembly approach to construct and investigate multilayer structures composed of ferritin and glucose oxidase, with a particular focus on the redox properties of ferritin and its role in mediating electron transfer between enzymes and electrodes. Our results show that the strategic integration of ferritin into BFC anodes significantly enhances both current density and operational stability, representing a significant advancement in the development of high performance BFCs. The study provides critical insights into the design of stable and efficient BFCs and/or biosensors, highlighting the potential of ferritin-based assemblies to drive future innovations in bioelectrochemical technologies. These advances have significant implications for a wide range of applications, including medical devices, environmental monitoring, and renewable energy systems.</description><subject>Anodes</subject><subject>Assemblies</subject><subject>Biochemical fuel cells</subject><subject>Biocompatibility</subject><subject>Biodiesel fuels</subject><subject>Biofuels</subject><subject>Biosensors</subject><subject>Cell anodes</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electron spin</subject><subject>Electron transfer</subject><subject>Environmental monitoring</subject><subject>Ferritin</subject><subject>Glucose oxidase</subject><subject>Iron</subject><subject>Medical equipment</subject><subject>Medical innovations</subject><subject>Multilayers</subject><subject>Oxidation</subject><subject>Performance enhancement</subject><subject>Proteins</subject><subject>Redox properties</subject><subject>Renewable energy</subject><subject>Spin coating</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpFkE9LAzEQxYMoWGovfoKAN2E12SS7m2Op9Q8UvNTzkk0mmrKb1CQV69FP7paKzmUG5vfeg4fQJSU3lDB5e8fXc1JJXs9P0KQkghQ1l9Xp390052iW0oaM05CRlBP0vfRvymsYwGccLIYedI7B4xyVTxYiBmudduD1HjuPOxfsDnqsoe-x8sFAwrvk_Ovho8OwVdl1PeAIJnwWSmf3AXi0iS6PauUNBv-1HwCrlGDoegfpAp1Z1SeY_e4perlfrhePxer54WkxXxWaNjwXVhhaEy5JA7RWlRLMElF1TDNtiAAuqClJZagwFZdMlCWvZCM6ASNnjKBsiq6OvtsY3neQcrsJu-jHyJZRIbikDWEjdX2kdAwpRbDtNrpBxX1LSXuouf2vmf0Aw_1w1g</recordid><startdate>20250114</startdate><enddate>20250114</enddate><creator>Chan Jin, Gee</creator><creator>Yu, Hye Min</creator><creator>Jung, Eui Guk</creator><creator>Choi, Seung-Kyum</creator><creator>Ko, Yongmin</creator><creator>Kwon, Cheong Hoon</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9516-0669</orcidid><orcidid>https://orcid.org/0009-0001-8930-5753</orcidid><orcidid>https://orcid.org/0000-0001-9258-3933</orcidid><orcidid>https://orcid.org/0000-0002-1201-7825</orcidid><orcidid>https://orcid.org/0009-0005-4053-6015</orcidid><orcidid>https://orcid.org/0000-0003-2851-0427</orcidid></search><sort><creationdate>20250114</creationdate><title>Enhancement of electron transfer efficiency in biofuel cell anodes using biocompatible redox-active ferritin and enzyme assemblies</title><author>Chan Jin, Gee ; Yu, Hye Min ; Jung, Eui Guk ; Choi, Seung-Kyum ; Ko, Yongmin ; Kwon, Cheong Hoon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c184t-f5d1704908e17a6a53f056b3c3cd05e451d206d15d649352246985b5e3f0dd513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Anodes</topic><topic>Assemblies</topic><topic>Biochemical fuel cells</topic><topic>Biocompatibility</topic><topic>Biodiesel fuels</topic><topic>Biofuels</topic><topic>Biosensors</topic><topic>Cell anodes</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electron spin</topic><topic>Electron transfer</topic><topic>Environmental monitoring</topic><topic>Ferritin</topic><topic>Glucose oxidase</topic><topic>Iron</topic><topic>Medical equipment</topic><topic>Medical innovations</topic><topic>Multilayers</topic><topic>Oxidation</topic><topic>Performance enhancement</topic><topic>Proteins</topic><topic>Redox properties</topic><topic>Renewable energy</topic><topic>Spin coating</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chan Jin, Gee</creatorcontrib><creatorcontrib>Yu, Hye Min</creatorcontrib><creatorcontrib>Jung, Eui Guk</creatorcontrib><creatorcontrib>Choi, Seung-Kyum</creatorcontrib><creatorcontrib>Ko, Yongmin</creatorcontrib><creatorcontrib>Kwon, Cheong Hoon</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chan Jin, Gee</au><au>Yu, Hye Min</au><au>Jung, Eui Guk</au><au>Choi, Seung-Kyum</au><au>Ko, Yongmin</au><au>Kwon, Cheong Hoon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of electron transfer efficiency in biofuel cell anodes using biocompatible redox-active ferritin and enzyme assemblies</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2025-01-14</date><risdate>2025</risdate><volume>13</volume><issue>3</issue><spage>1808</spage><epage>1819</epage><pages>1808-1819</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Ferritin, a naturally occurring iron storage protein, plays a critical role in iron oxidation–reduction processes, making it a focus of recent research to improve the performance of biofuel cell (BFC) electrodes. The highly stable Fe III /Fe II redox pairs within the ferritin core allow for reversible electron release/uptake during electrochemical sweeps, making it potentially applicable as a biocompatible redox mediator. In addition, the outermost protein nanoshell provides an effective anchoring site for strong bridging with active components. This dual functionality positions ferritin as a promising candidate for improving electron transfer efficiency in BFCs. In this study, we used a spin coating-assisted layer-by-layer assembly approach to construct and investigate multilayer structures composed of ferritin and glucose oxidase, with a particular focus on the redox properties of ferritin and its role in mediating electron transfer between enzymes and electrodes. Our results show that the strategic integration of ferritin into BFC anodes significantly enhances both current density and operational stability, representing a significant advancement in the development of high performance BFCs. The study provides critical insights into the design of stable and efficient BFCs and/or biosensors, highlighting the potential of ferritin-based assemblies to drive future innovations in bioelectrochemical technologies. These advances have significant implications for a wide range of applications, including medical devices, environmental monitoring, and renewable energy systems.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D4TA06947A</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9516-0669</orcidid><orcidid>https://orcid.org/0009-0001-8930-5753</orcidid><orcidid>https://orcid.org/0000-0001-9258-3933</orcidid><orcidid>https://orcid.org/0000-0002-1201-7825</orcidid><orcidid>https://orcid.org/0009-0005-4053-6015</orcidid><orcidid>https://orcid.org/0000-0003-2851-0427</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7488 |
ispartof | Journal of materials chemistry. A, Materials for energy and sustainability, 2025-01, Vol.13 (3), p.1808-1819 |
issn | 2050-7488 2050-7496 |
language | eng |
recordid | cdi_proquest_journals_3155491803 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Anodes Assemblies Biochemical fuel cells Biocompatibility Biodiesel fuels Biofuels Biosensors Cell anodes Electrochemistry Electrodes Electron spin Electron transfer Environmental monitoring Ferritin Glucose oxidase Iron Medical equipment Medical innovations Multilayers Oxidation Performance enhancement Proteins Redox properties Renewable energy Spin coating |
title | Enhancement of electron transfer efficiency in biofuel cell anodes using biocompatible redox-active ferritin and enzyme assemblies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A40%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20electron%20transfer%20efficiency%20in%20biofuel%20cell%20anodes%20using%20biocompatible%20redox-active%20ferritin%20and%20enzyme%20assemblies&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Chan%20Jin,%20Gee&rft.date=2025-01-14&rft.volume=13&rft.issue=3&rft.spage=1808&rft.epage=1819&rft.pages=1808-1819&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/D4TA06947A&rft_dat=%3Cproquest_cross%3E3155491803%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3155491803&rft_id=info:pmid/&rfr_iscdi=true |