A forest fire detection method based on improved YOLOv5
With the continuous intensification of global climate change, forest fires have become a significant threat to natural ecosystems and human society. The automatic fire detection system plays a crucial role in the early discovery of forest fires. Current YOLOv5-based fire detection methods encounter...
Gespeichert in:
Veröffentlicht in: | Signal, image and video processing image and video processing, 2025-01, Vol.19 (2), Article 136 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Signal, image and video processing |
container_volume | 19 |
creator | Sun, Zukai Xu, Ruzhi Zheng, Xiangwei Zhang, Lifeng Zhang, Yuang |
description | With the continuous intensification of global climate change, forest fires have become a significant threat to natural ecosystems and human society. The automatic fire detection system plays a crucial role in the early discovery of forest fires. Current YOLOv5-based fire detection methods encounter several significant challenges: low accuracy and high miss rates in complex backgrounds, inefficiency in real-time applications, and difficulty in detecting small targets, particularly in the early stages of a fire. To address these issues, we propose a forest fire detection method based on improved YOLOv5, aimed at achieving efficient real-time monitoring in resource-constrained environments. First, we add the Convolutional Block Attention Module to improve channel and spatial attention, enhancing the detection of small fire features essential for early detection. Next, we integrate a small target detection layer and the Ghost module into YOLOv5. The small target layer boosts sensitivity to small fire areas, while the Ghost module reduces computational load and parameters, improving feature extraction without sacrificing performance. Finally, we use the SIOU loss function to accelerate model convergence, enhancing overall detection efficiency and precision. Experimental results show that the proposed method achieves an mAP of 88.3% on the Yang et al. dataset, which improves the mAP by 0.9% compared to other YOLOv5-based methods on the same dataset. Model parameter size decreased by 2.8%. On our forest fire detection dataset, the proposed method achieves an mAP of 79.1%. Compared to the YOLOv5s model, this represents a 3.7% improvement in mAP. Model parameter size decreased by 2.3%. |
doi_str_mv | 10.1007/s11760-024-03680-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3155302576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3145727006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-8a652d58ccf6174403e80a4b681efb826d5b828dd4381ab11c23fa689d22f1983</originalsourceid><addsrcrecordid>eNp9UEtLAzEQDqJgqf0DnhY8R2eSTTI9luKjUOhFD57C7ibRLbZbk23Bf2_qit46h3nA9xg-xq4RbhHA3CVEo4GDKDlITcD1GRshacnRIJ7_7SAv2SSlNeSSwpCmETOzInTRp74IbfSF871v-rbbFhvfv3euqKvkXZHvdrOL3SHvr6vl6qCu2EWoPpKf_M4xe3m4f54_8eXqcTGfLXkjBPWcKq2EU9Q0QaMpS5CeoCprTehDTUI7lTs5V0rCqkZshAyVpqkTIuCU5JjdDLrZ_XOf_7Trbh-32dJKVEqCUEafRpXKCANwRIkB1cQupeiD3cV2U8Uvi2CPSdohSZuTtD9J2iNJDqSUwds3H_-lT7C-AXB2cqQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3145727006</pqid></control><display><type>article</type><title>A forest fire detection method based on improved YOLOv5</title><source>Springer Nature - Complete Springer Journals</source><creator>Sun, Zukai ; Xu, Ruzhi ; Zheng, Xiangwei ; Zhang, Lifeng ; Zhang, Yuang</creator><creatorcontrib>Sun, Zukai ; Xu, Ruzhi ; Zheng, Xiangwei ; Zhang, Lifeng ; Zhang, Yuang</creatorcontrib><description>With the continuous intensification of global climate change, forest fires have become a significant threat to natural ecosystems and human society. The automatic fire detection system plays a crucial role in the early discovery of forest fires. Current YOLOv5-based fire detection methods encounter several significant challenges: low accuracy and high miss rates in complex backgrounds, inefficiency in real-time applications, and difficulty in detecting small targets, particularly in the early stages of a fire. To address these issues, we propose a forest fire detection method based on improved YOLOv5, aimed at achieving efficient real-time monitoring in resource-constrained environments. First, we add the Convolutional Block Attention Module to improve channel and spatial attention, enhancing the detection of small fire features essential for early detection. Next, we integrate a small target detection layer and the Ghost module into YOLOv5. The small target layer boosts sensitivity to small fire areas, while the Ghost module reduces computational load and parameters, improving feature extraction without sacrificing performance. Finally, we use the SIOU loss function to accelerate model convergence, enhancing overall detection efficiency and precision. Experimental results show that the proposed method achieves an mAP of 88.3% on the Yang et al. dataset, which improves the mAP by 0.9% compared to other YOLOv5-based methods on the same dataset. Model parameter size decreased by 2.8%. On our forest fire detection dataset, the proposed method achieves an mAP of 79.1%. Compared to the YOLOv5s model, this represents a 3.7% improvement in mAP. Model parameter size decreased by 2.3%.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-024-03680-6</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Climate change ; Computer Imaging ; Computer Science ; Datasets ; Forest fire detection ; Image Processing and Computer Vision ; Modules ; Multimedia Information Systems ; Object recognition ; Original Paper ; Parameter sensitivity ; Pattern Recognition and Graphics ; Real time ; Signal,Image and Speech Processing ; Target detection ; Vision</subject><ispartof>Signal, image and video processing, 2025-01, Vol.19 (2), Article 136</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c228t-8a652d58ccf6174403e80a4b681efb826d5b828dd4381ab11c23fa689d22f1983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-024-03680-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-024-03680-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sun, Zukai</creatorcontrib><creatorcontrib>Xu, Ruzhi</creatorcontrib><creatorcontrib>Zheng, Xiangwei</creatorcontrib><creatorcontrib>Zhang, Lifeng</creatorcontrib><creatorcontrib>Zhang, Yuang</creatorcontrib><title>A forest fire detection method based on improved YOLOv5</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>With the continuous intensification of global climate change, forest fires have become a significant threat to natural ecosystems and human society. The automatic fire detection system plays a crucial role in the early discovery of forest fires. Current YOLOv5-based fire detection methods encounter several significant challenges: low accuracy and high miss rates in complex backgrounds, inefficiency in real-time applications, and difficulty in detecting small targets, particularly in the early stages of a fire. To address these issues, we propose a forest fire detection method based on improved YOLOv5, aimed at achieving efficient real-time monitoring in resource-constrained environments. First, we add the Convolutional Block Attention Module to improve channel and spatial attention, enhancing the detection of small fire features essential for early detection. Next, we integrate a small target detection layer and the Ghost module into YOLOv5. The small target layer boosts sensitivity to small fire areas, while the Ghost module reduces computational load and parameters, improving feature extraction without sacrificing performance. Finally, we use the SIOU loss function to accelerate model convergence, enhancing overall detection efficiency and precision. Experimental results show that the proposed method achieves an mAP of 88.3% on the Yang et al. dataset, which improves the mAP by 0.9% compared to other YOLOv5-based methods on the same dataset. Model parameter size decreased by 2.8%. On our forest fire detection dataset, the proposed method achieves an mAP of 79.1%. Compared to the YOLOv5s model, this represents a 3.7% improvement in mAP. Model parameter size decreased by 2.3%.</description><subject>Climate change</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Datasets</subject><subject>Forest fire detection</subject><subject>Image Processing and Computer Vision</subject><subject>Modules</subject><subject>Multimedia Information Systems</subject><subject>Object recognition</subject><subject>Original Paper</subject><subject>Parameter sensitivity</subject><subject>Pattern Recognition and Graphics</subject><subject>Real time</subject><subject>Signal,Image and Speech Processing</subject><subject>Target detection</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9UEtLAzEQDqJgqf0DnhY8R2eSTTI9luKjUOhFD57C7ibRLbZbk23Bf2_qit46h3nA9xg-xq4RbhHA3CVEo4GDKDlITcD1GRshacnRIJ7_7SAv2SSlNeSSwpCmETOzInTRp74IbfSF871v-rbbFhvfv3euqKvkXZHvdrOL3SHvr6vl6qCu2EWoPpKf_M4xe3m4f54_8eXqcTGfLXkjBPWcKq2EU9Q0QaMpS5CeoCprTehDTUI7lTs5V0rCqkZshAyVpqkTIuCU5JjdDLrZ_XOf_7Trbh-32dJKVEqCUEafRpXKCANwRIkB1cQupeiD3cV2U8Uvi2CPSdohSZuTtD9J2iNJDqSUwds3H_-lT7C-AXB2cqQ</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Sun, Zukai</creator><creator>Xu, Ruzhi</creator><creator>Zheng, Xiangwei</creator><creator>Zhang, Lifeng</creator><creator>Zhang, Yuang</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20250101</creationdate><title>A forest fire detection method based on improved YOLOv5</title><author>Sun, Zukai ; Xu, Ruzhi ; Zheng, Xiangwei ; Zhang, Lifeng ; Zhang, Yuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-8a652d58ccf6174403e80a4b681efb826d5b828dd4381ab11c23fa689d22f1983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Climate change</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Datasets</topic><topic>Forest fire detection</topic><topic>Image Processing and Computer Vision</topic><topic>Modules</topic><topic>Multimedia Information Systems</topic><topic>Object recognition</topic><topic>Original Paper</topic><topic>Parameter sensitivity</topic><topic>Pattern Recognition and Graphics</topic><topic>Real time</topic><topic>Signal,Image and Speech Processing</topic><topic>Target detection</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Zukai</creatorcontrib><creatorcontrib>Xu, Ruzhi</creatorcontrib><creatorcontrib>Zheng, Xiangwei</creatorcontrib><creatorcontrib>Zhang, Lifeng</creatorcontrib><creatorcontrib>Zhang, Yuang</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Zukai</au><au>Xu, Ruzhi</au><au>Zheng, Xiangwei</au><au>Zhang, Lifeng</au><au>Zhang, Yuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A forest fire detection method based on improved YOLOv5</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2025-01-01</date><risdate>2025</risdate><volume>19</volume><issue>2</issue><artnum>136</artnum><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>With the continuous intensification of global climate change, forest fires have become a significant threat to natural ecosystems and human society. The automatic fire detection system plays a crucial role in the early discovery of forest fires. Current YOLOv5-based fire detection methods encounter several significant challenges: low accuracy and high miss rates in complex backgrounds, inefficiency in real-time applications, and difficulty in detecting small targets, particularly in the early stages of a fire. To address these issues, we propose a forest fire detection method based on improved YOLOv5, aimed at achieving efficient real-time monitoring in resource-constrained environments. First, we add the Convolutional Block Attention Module to improve channel and spatial attention, enhancing the detection of small fire features essential for early detection. Next, we integrate a small target detection layer and the Ghost module into YOLOv5. The small target layer boosts sensitivity to small fire areas, while the Ghost module reduces computational load and parameters, improving feature extraction without sacrificing performance. Finally, we use the SIOU loss function to accelerate model convergence, enhancing overall detection efficiency and precision. Experimental results show that the proposed method achieves an mAP of 88.3% on the Yang et al. dataset, which improves the mAP by 0.9% compared to other YOLOv5-based methods on the same dataset. Model parameter size decreased by 2.8%. On our forest fire detection dataset, the proposed method achieves an mAP of 79.1%. Compared to the YOLOv5s model, this represents a 3.7% improvement in mAP. Model parameter size decreased by 2.3%.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-024-03680-6</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-1703 |
ispartof | Signal, image and video processing, 2025-01, Vol.19 (2), Article 136 |
issn | 1863-1703 1863-1711 |
language | eng |
recordid | cdi_proquest_journals_3155302576 |
source | Springer Nature - Complete Springer Journals |
subjects | Climate change Computer Imaging Computer Science Datasets Forest fire detection Image Processing and Computer Vision Modules Multimedia Information Systems Object recognition Original Paper Parameter sensitivity Pattern Recognition and Graphics Real time Signal,Image and Speech Processing Target detection Vision |
title | A forest fire detection method based on improved YOLOv5 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20forest%20fire%20detection%20method%20based%20on%20improved%20YOLOv5&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Sun,%20Zukai&rft.date=2025-01-01&rft.volume=19&rft.issue=2&rft.artnum=136&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-024-03680-6&rft_dat=%3Cproquest_cross%3E3145727006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3145727006&rft_id=info:pmid/&rfr_iscdi=true |