Inductive graph‐based long short‐term memory network for the prediction of nonlinear floor responses and member forces of steel buildings subjected to orthogonal horizontal ground motions

This paper introduces a novel hierarchical graph‐based long short‐term memory network designed for predicting the nonlinear seismic responses of building structures. We represent buildings as graphs with nodes and edges and utilize graph neural network (GNN) and long short‐term memory (LSTM) technol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Earthquake engineering & structural dynamics 2025-02, Vol.54 (2), p.491-507
Hauptverfasser: Chou, Yuan‐Tung, Kuo, Po‐Chih, Li, Kuang‐Yao, Chang, Wei‐Tze, Huang, Yin‐Nan, Chen, Chuin‐Shan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 507
container_issue 2
container_start_page 491
container_title Earthquake engineering & structural dynamics
container_volume 54
creator Chou, Yuan‐Tung
Kuo, Po‐Chih
Li, Kuang‐Yao
Chang, Wei‐Tze
Huang, Yin‐Nan
Chen, Chuin‐Shan
description This paper introduces a novel hierarchical graph‐based long short‐term memory network designed for predicting the nonlinear seismic responses of building structures. We represent buildings as graphs with nodes and edges and utilize graph neural network (GNN) and long short‐term memory (LSTM) technology to predict their responses when subjected to orthogonal horizontal ground motions. The model was trained using the results of nonlinear response‐history analyses using 2000 sample 4–7‐story steel moment resisting frames and 88 pairs of ground‐motion records from earthquakes with a moment magnitude greater than 6.0 and closest site‐to‐fault distance shorter than 20 km. The results demonstrate the model's great performance in predicting floor acceleration, velocity, and displacement, as well as shear force, bending moment, and plastic hinges in beams and columns. Furthermore, the model has learned to recognize the significance of the first mode period of a building. The model's robust generalizability across diverse building geometry and its comprehensive predictions of floor responses and member forces position it as a potential surrogate model for the response‐history analysis of buildings.
doi_str_mv 10.1002/eqe.4264
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3155103633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3155103633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2184-2b2bb54dfa1bda869442ccde0038897b1db38f4e58a7cdf7f78b463f446baebe3</originalsourceid><addsrcrecordid>eNp1kUGO1DAQRS0EEs2AxBEssWGTwU6cxFmiUQMjjYSQYB3ZcTmdJu3KlB1GzYojcCPuwklwaLasqlR69X-pPmMvpbiWQpRv4B6uVdmoR2wnRdcUnVb1Y7YTotOF1qp9yp7FeBRCVI1od-zXbXDrkKZvwEcyy-H3j5_WRHB8xjDyeEBKeZSATvwEJ6QzD5AekL5yj8TTAfhC4KasgIGj5wHDPAUwxP2MmSCIC4YIkZvgNgkLtK0OeZLxmABmbtdpdlMYI4-rPcKQsn9Cnr0POGIwM893TN8xpNyOhOsmhZtlfM6eeDNHePGvXrEv7_afbz4Udx_f3968vSuGUmpVlLa0tlbOG2md0U2nVDkMDvIbtO5aK52ttFdQa9MOzre-1VY1lVeqsQYsVFfs1UV3IbxfIab-iCvl02JfybqW-Z1VlanXF2ogjJHA9wtNJ0PnXop-i6fP8fRbPBktLujDNMP5v1y__7T_y_8BTFyZ3A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3155103633</pqid></control><display><type>article</type><title>Inductive graph‐based long short‐term memory network for the prediction of nonlinear floor responses and member forces of steel buildings subjected to orthogonal horizontal ground motions</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chou, Yuan‐Tung ; Kuo, Po‐Chih ; Li, Kuang‐Yao ; Chang, Wei‐Tze ; Huang, Yin‐Nan ; Chen, Chuin‐Shan</creator><creatorcontrib>Chou, Yuan‐Tung ; Kuo, Po‐Chih ; Li, Kuang‐Yao ; Chang, Wei‐Tze ; Huang, Yin‐Nan ; Chen, Chuin‐Shan</creatorcontrib><description>This paper introduces a novel hierarchical graph‐based long short‐term memory network designed for predicting the nonlinear seismic responses of building structures. We represent buildings as graphs with nodes and edges and utilize graph neural network (GNN) and long short‐term memory (LSTM) technology to predict their responses when subjected to orthogonal horizontal ground motions. The model was trained using the results of nonlinear response‐history analyses using 2000 sample 4–7‐story steel moment resisting frames and 88 pairs of ground‐motion records from earthquakes with a moment magnitude greater than 6.0 and closest site‐to‐fault distance shorter than 20 km. The results demonstrate the model's great performance in predicting floor acceleration, velocity, and displacement, as well as shear force, bending moment, and plastic hinges in beams and columns. Furthermore, the model has learned to recognize the significance of the first mode period of a building. The model's robust generalizability across diverse building geometry and its comprehensive predictions of floor responses and member forces position it as a potential surrogate model for the response‐history analysis of buildings.</description><identifier>ISSN: 0098-8847</identifier><identifier>EISSN: 1096-9845</identifier><identifier>DOI: 10.1002/eqe.4264</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Acceleration ; Bending moments ; Buildings ; deep learning ; Deformation ; Earthquakes ; graph neural network ; Graph neural networks ; Graph theory ; Graphs ; Ground motion ; History ; long short‐term memory ; Mechanical properties ; Neural networks ; Nonlinear response ; nonlinear response‐history analysis ; Plastic properties ; Plasticity ; Predictions ; Seismic activity ; Seismic response ; Shear forces ; Steel ; Steel frames</subject><ispartof>Earthquake engineering &amp; structural dynamics, 2025-02, Vol.54 (2), p.491-507</ispartof><rights>2024 The Author(s). published by John Wiley &amp; Sons Ltd.</rights><rights>2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2184-2b2bb54dfa1bda869442ccde0038897b1db38f4e58a7cdf7f78b463f446baebe3</cites><orcidid>0000-0002-8572-9356 ; 0000-0002-8382-1562 ; 0000-0001-5281-2535</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feqe.4264$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feqe.4264$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Chou, Yuan‐Tung</creatorcontrib><creatorcontrib>Kuo, Po‐Chih</creatorcontrib><creatorcontrib>Li, Kuang‐Yao</creatorcontrib><creatorcontrib>Chang, Wei‐Tze</creatorcontrib><creatorcontrib>Huang, Yin‐Nan</creatorcontrib><creatorcontrib>Chen, Chuin‐Shan</creatorcontrib><title>Inductive graph‐based long short‐term memory network for the prediction of nonlinear floor responses and member forces of steel buildings subjected to orthogonal horizontal ground motions</title><title>Earthquake engineering &amp; structural dynamics</title><description>This paper introduces a novel hierarchical graph‐based long short‐term memory network designed for predicting the nonlinear seismic responses of building structures. We represent buildings as graphs with nodes and edges and utilize graph neural network (GNN) and long short‐term memory (LSTM) technology to predict their responses when subjected to orthogonal horizontal ground motions. The model was trained using the results of nonlinear response‐history analyses using 2000 sample 4–7‐story steel moment resisting frames and 88 pairs of ground‐motion records from earthquakes with a moment magnitude greater than 6.0 and closest site‐to‐fault distance shorter than 20 km. The results demonstrate the model's great performance in predicting floor acceleration, velocity, and displacement, as well as shear force, bending moment, and plastic hinges in beams and columns. Furthermore, the model has learned to recognize the significance of the first mode period of a building. The model's robust generalizability across diverse building geometry and its comprehensive predictions of floor responses and member forces position it as a potential surrogate model for the response‐history analysis of buildings.</description><subject>Acceleration</subject><subject>Bending moments</subject><subject>Buildings</subject><subject>deep learning</subject><subject>Deformation</subject><subject>Earthquakes</subject><subject>graph neural network</subject><subject>Graph neural networks</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Ground motion</subject><subject>History</subject><subject>long short‐term memory</subject><subject>Mechanical properties</subject><subject>Neural networks</subject><subject>Nonlinear response</subject><subject>nonlinear response‐history analysis</subject><subject>Plastic properties</subject><subject>Plasticity</subject><subject>Predictions</subject><subject>Seismic activity</subject><subject>Seismic response</subject><subject>Shear forces</subject><subject>Steel</subject><subject>Steel frames</subject><issn>0098-8847</issn><issn>1096-9845</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kUGO1DAQRS0EEs2AxBEssWGTwU6cxFmiUQMjjYSQYB3ZcTmdJu3KlB1GzYojcCPuwklwaLasqlR69X-pPmMvpbiWQpRv4B6uVdmoR2wnRdcUnVb1Y7YTotOF1qp9yp7FeBRCVI1od-zXbXDrkKZvwEcyy-H3j5_WRHB8xjDyeEBKeZSATvwEJ6QzD5AekL5yj8TTAfhC4KasgIGj5wHDPAUwxP2MmSCIC4YIkZvgNgkLtK0OeZLxmABmbtdpdlMYI4-rPcKQsn9Cnr0POGIwM893TN8xpNyOhOsmhZtlfM6eeDNHePGvXrEv7_afbz4Udx_f3968vSuGUmpVlLa0tlbOG2md0U2nVDkMDvIbtO5aK52ttFdQa9MOzre-1VY1lVeqsQYsVFfs1UV3IbxfIab-iCvl02JfybqW-Z1VlanXF2ogjJHA9wtNJ0PnXop-i6fP8fRbPBktLujDNMP5v1y__7T_y_8BTFyZ3A</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Chou, Yuan‐Tung</creator><creator>Kuo, Po‐Chih</creator><creator>Li, Kuang‐Yao</creator><creator>Chang, Wei‐Tze</creator><creator>Huang, Yin‐Nan</creator><creator>Chen, Chuin‐Shan</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8572-9356</orcidid><orcidid>https://orcid.org/0000-0002-8382-1562</orcidid><orcidid>https://orcid.org/0000-0001-5281-2535</orcidid></search><sort><creationdate>202502</creationdate><title>Inductive graph‐based long short‐term memory network for the prediction of nonlinear floor responses and member forces of steel buildings subjected to orthogonal horizontal ground motions</title><author>Chou, Yuan‐Tung ; Kuo, Po‐Chih ; Li, Kuang‐Yao ; Chang, Wei‐Tze ; Huang, Yin‐Nan ; Chen, Chuin‐Shan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2184-2b2bb54dfa1bda869442ccde0038897b1db38f4e58a7cdf7f78b463f446baebe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Acceleration</topic><topic>Bending moments</topic><topic>Buildings</topic><topic>deep learning</topic><topic>Deformation</topic><topic>Earthquakes</topic><topic>graph neural network</topic><topic>Graph neural networks</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Ground motion</topic><topic>History</topic><topic>long short‐term memory</topic><topic>Mechanical properties</topic><topic>Neural networks</topic><topic>Nonlinear response</topic><topic>nonlinear response‐history analysis</topic><topic>Plastic properties</topic><topic>Plasticity</topic><topic>Predictions</topic><topic>Seismic activity</topic><topic>Seismic response</topic><topic>Shear forces</topic><topic>Steel</topic><topic>Steel frames</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chou, Yuan‐Tung</creatorcontrib><creatorcontrib>Kuo, Po‐Chih</creatorcontrib><creatorcontrib>Li, Kuang‐Yao</creatorcontrib><creatorcontrib>Chang, Wei‐Tze</creatorcontrib><creatorcontrib>Huang, Yin‐Nan</creatorcontrib><creatorcontrib>Chen, Chuin‐Shan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Earthquake engineering &amp; structural dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chou, Yuan‐Tung</au><au>Kuo, Po‐Chih</au><au>Li, Kuang‐Yao</au><au>Chang, Wei‐Tze</au><au>Huang, Yin‐Nan</au><au>Chen, Chuin‐Shan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inductive graph‐based long short‐term memory network for the prediction of nonlinear floor responses and member forces of steel buildings subjected to orthogonal horizontal ground motions</atitle><jtitle>Earthquake engineering &amp; structural dynamics</jtitle><date>2025-02</date><risdate>2025</risdate><volume>54</volume><issue>2</issue><spage>491</spage><epage>507</epage><pages>491-507</pages><issn>0098-8847</issn><eissn>1096-9845</eissn><abstract>This paper introduces a novel hierarchical graph‐based long short‐term memory network designed for predicting the nonlinear seismic responses of building structures. We represent buildings as graphs with nodes and edges and utilize graph neural network (GNN) and long short‐term memory (LSTM) technology to predict their responses when subjected to orthogonal horizontal ground motions. The model was trained using the results of nonlinear response‐history analyses using 2000 sample 4–7‐story steel moment resisting frames and 88 pairs of ground‐motion records from earthquakes with a moment magnitude greater than 6.0 and closest site‐to‐fault distance shorter than 20 km. The results demonstrate the model's great performance in predicting floor acceleration, velocity, and displacement, as well as shear force, bending moment, and plastic hinges in beams and columns. Furthermore, the model has learned to recognize the significance of the first mode period of a building. The model's robust generalizability across diverse building geometry and its comprehensive predictions of floor responses and member forces position it as a potential surrogate model for the response‐history analysis of buildings.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eqe.4264</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-8572-9356</orcidid><orcidid>https://orcid.org/0000-0002-8382-1562</orcidid><orcidid>https://orcid.org/0000-0001-5281-2535</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0098-8847
ispartof Earthquake engineering & structural dynamics, 2025-02, Vol.54 (2), p.491-507
issn 0098-8847
1096-9845
language eng
recordid cdi_proquest_journals_3155103633
source Wiley Online Library Journals Frontfile Complete
subjects Acceleration
Bending moments
Buildings
deep learning
Deformation
Earthquakes
graph neural network
Graph neural networks
Graph theory
Graphs
Ground motion
History
long short‐term memory
Mechanical properties
Neural networks
Nonlinear response
nonlinear response‐history analysis
Plastic properties
Plasticity
Predictions
Seismic activity
Seismic response
Shear forces
Steel
Steel frames
title Inductive graph‐based long short‐term memory network for the prediction of nonlinear floor responses and member forces of steel buildings subjected to orthogonal horizontal ground motions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T15%3A35%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inductive%20graph%E2%80%90based%20long%20short%E2%80%90term%20memory%20network%20for%20the%20prediction%20of%20nonlinear%20floor%20responses%20and%20member%20forces%20of%20steel%20buildings%20subjected%20to%20orthogonal%20horizontal%20ground%20motions&rft.jtitle=Earthquake%20engineering%20&%20structural%20dynamics&rft.au=Chou,%20Yuan%E2%80%90Tung&rft.date=2025-02&rft.volume=54&rft.issue=2&rft.spage=491&rft.epage=507&rft.pages=491-507&rft.issn=0098-8847&rft.eissn=1096-9845&rft_id=info:doi/10.1002/eqe.4264&rft_dat=%3Cproquest_cross%3E3155103633%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3155103633&rft_id=info:pmid/&rfr_iscdi=true