On a class of generalized capillarity system involving fractional ψ#x02010;Hilfer derivative with p(·)‐Laplacian operator

This research delves into a comprehensive investigation of a class of ψ$$ \psi $$‐Hilfer generalized fractional nonlinear differential system originated from a capillarity phenomena with Dirichlet boundary conditions, focusing on issues of existence and multiplicity of nonnegative solutions. The non...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2025-02, Vol.48 (3), p.3448-3470
Hauptverfasser: Arhrrabi, Elhoussain, El‐Houari, Hamza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3470
container_issue 3
container_start_page 3448
container_title Mathematical methods in the applied sciences
container_volume 48
creator Arhrrabi, Elhoussain
El‐Houari, Hamza
description This research delves into a comprehensive investigation of a class of ψ$$ \psi $$‐Hilfer generalized fractional nonlinear differential system originated from a capillarity phenomena with Dirichlet boundary conditions, focusing on issues of existence and multiplicity of nonnegative solutions. The nonlinearity of the problem, in general, does not satisfy the Ambrosetti–Rabinowitz type condition. We use minimization arguments of Nehari manifold together with variational approach to show the existence and multiplicity of positive solutions of our problem with respect to the parameter ξ$$ \xi $$ in appropriate fractional ψ$$ \psi $$‐Hilfer spaces. Our main result is novel, and its investigation will enhance the scope of the literature on coupled systems of fractional ψ$$ \psi $$‐Hilfer generalized capillary phenomena.
doi_str_mv 10.1002/mma.10495
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3155058041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3155058041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1025-952303de89c62ad6dd2a0b0cea8dd7176aa0fedd3a609c740977975345fbcf113</originalsourceid><addsrcrecordid>eNp1kDtOAzEQhi0EEiFQcANLaaBYMt73iiqKgCAlSgP1amJ7gyPvA3uzIUhIlJTchp4LcAdOwoalpZq_-Gb-0UfIKYMLBuAO8xzb4CfBHukxSBKH-VG4T3rAInB8l_mH5MjaFQDEjLk98jIvKFKu0VpaZnQpC2lQq2cpKMdKaY1G1Vtqt7aWOVVFU-pGFUuaGeS1KgvU9Ott8AQuMLicKJ1JQ4U0qsFaNZJuVP1Aq7PPj_Pv1_cpVhq5woKWVdtSl-aYHGSorTz5m31yf311N5440_nN7Xg0dTgDN3CSwPXAEzJOeOiiCIVwERbAJcZCRCwKESGTQngYQsIjH5IoSqLA84NswTPGvD4ZdHcrUz6upa3TVbk27fM29VgQQBCDv6POO4qb0lojs7QyKkezTRmkO7tpazf9tduyw47dKC23_4PpbDbqNn4A5Sl-pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3155058041</pqid></control><display><type>article</type><title>On a class of generalized capillarity system involving fractional ψ#x02010;Hilfer derivative with p(·)‐Laplacian operator</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Arhrrabi, Elhoussain ; El‐Houari, Hamza</creator><creatorcontrib>Arhrrabi, Elhoussain ; El‐Houari, Hamza</creatorcontrib><description>This research delves into a comprehensive investigation of a class of ψ$$ \psi $$‐Hilfer generalized fractional nonlinear differential system originated from a capillarity phenomena with Dirichlet boundary conditions, focusing on issues of existence and multiplicity of nonnegative solutions. The nonlinearity of the problem, in general, does not satisfy the Ambrosetti–Rabinowitz type condition. We use minimization arguments of Nehari manifold together with variational approach to show the existence and multiplicity of positive solutions of our problem with respect to the parameter ξ$$ \xi $$ in appropriate fractional ψ$$ \psi $$‐Hilfer spaces. Our main result is novel, and its investigation will enhance the scope of the literature on coupled systems of fractional ψ$$ \psi $$‐Hilfer generalized capillary phenomena.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.10495</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Boundary conditions ; Capillarity ; capillary phenomena ; generalized ψ$$ \psi $$‐Hilfer derivative ; Laplace transforms ; Nehari manifold ; Nonlinearity ; Operators (mathematics) ; variational approach</subject><ispartof>Mathematical methods in the applied sciences, 2025-02, Vol.48 (3), p.3448-3470</ispartof><rights>2024 John Wiley &amp; Sons Ltd.</rights><rights>2025 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1025-952303de89c62ad6dd2a0b0cea8dd7176aa0fedd3a609c740977975345fbcf113</cites><orcidid>0000-0003-4240-1286 ; 0000-0002-9239-4603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.10495$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.10495$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Arhrrabi, Elhoussain</creatorcontrib><creatorcontrib>El‐Houari, Hamza</creatorcontrib><title>On a class of generalized capillarity system involving fractional ψ#x02010;Hilfer derivative with p(·)‐Laplacian operator</title><title>Mathematical methods in the applied sciences</title><description>This research delves into a comprehensive investigation of a class of ψ$$ \psi $$‐Hilfer generalized fractional nonlinear differential system originated from a capillarity phenomena with Dirichlet boundary conditions, focusing on issues of existence and multiplicity of nonnegative solutions. The nonlinearity of the problem, in general, does not satisfy the Ambrosetti–Rabinowitz type condition. We use minimization arguments of Nehari manifold together with variational approach to show the existence and multiplicity of positive solutions of our problem with respect to the parameter ξ$$ \xi $$ in appropriate fractional ψ$$ \psi $$‐Hilfer spaces. Our main result is novel, and its investigation will enhance the scope of the literature on coupled systems of fractional ψ$$ \psi $$‐Hilfer generalized capillary phenomena.</description><subject>Boundary conditions</subject><subject>Capillarity</subject><subject>capillary phenomena</subject><subject>generalized ψ$$ \psi $$‐Hilfer derivative</subject><subject>Laplace transforms</subject><subject>Nehari manifold</subject><subject>Nonlinearity</subject><subject>Operators (mathematics)</subject><subject>variational approach</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp1kDtOAzEQhi0EEiFQcANLaaBYMt73iiqKgCAlSgP1amJ7gyPvA3uzIUhIlJTchp4LcAdOwoalpZq_-Gb-0UfIKYMLBuAO8xzb4CfBHukxSBKH-VG4T3rAInB8l_mH5MjaFQDEjLk98jIvKFKu0VpaZnQpC2lQq2cpKMdKaY1G1Vtqt7aWOVVFU-pGFUuaGeS1KgvU9Ott8AQuMLicKJ1JQ4U0qsFaNZJuVP1Aq7PPj_Pv1_cpVhq5woKWVdtSl-aYHGSorTz5m31yf311N5440_nN7Xg0dTgDN3CSwPXAEzJOeOiiCIVwERbAJcZCRCwKESGTQngYQsIjH5IoSqLA84NswTPGvD4ZdHcrUz6upa3TVbk27fM29VgQQBCDv6POO4qb0lojs7QyKkezTRmkO7tpazf9tduyw47dKC23_4PpbDbqNn4A5Sl-pg</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Arhrrabi, Elhoussain</creator><creator>El‐Houari, Hamza</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-4240-1286</orcidid><orcidid>https://orcid.org/0000-0002-9239-4603</orcidid></search><sort><creationdate>202502</creationdate><title>On a class of generalized capillarity system involving fractional ψ#x02010;Hilfer derivative with p(·)‐Laplacian operator</title><author>Arhrrabi, Elhoussain ; El‐Houari, Hamza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1025-952303de89c62ad6dd2a0b0cea8dd7176aa0fedd3a609c740977975345fbcf113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Boundary conditions</topic><topic>Capillarity</topic><topic>capillary phenomena</topic><topic>generalized ψ$$ \psi $$‐Hilfer derivative</topic><topic>Laplace transforms</topic><topic>Nehari manifold</topic><topic>Nonlinearity</topic><topic>Operators (mathematics)</topic><topic>variational approach</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arhrrabi, Elhoussain</creatorcontrib><creatorcontrib>El‐Houari, Hamza</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arhrrabi, Elhoussain</au><au>El‐Houari, Hamza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a class of generalized capillarity system involving fractional ψ#x02010;Hilfer derivative with p(·)‐Laplacian operator</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2025-02</date><risdate>2025</risdate><volume>48</volume><issue>3</issue><spage>3448</spage><epage>3470</epage><pages>3448-3470</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This research delves into a comprehensive investigation of a class of ψ$$ \psi $$‐Hilfer generalized fractional nonlinear differential system originated from a capillarity phenomena with Dirichlet boundary conditions, focusing on issues of existence and multiplicity of nonnegative solutions. The nonlinearity of the problem, in general, does not satisfy the Ambrosetti–Rabinowitz type condition. We use minimization arguments of Nehari manifold together with variational approach to show the existence and multiplicity of positive solutions of our problem with respect to the parameter ξ$$ \xi $$ in appropriate fractional ψ$$ \psi $$‐Hilfer spaces. Our main result is novel, and its investigation will enhance the scope of the literature on coupled systems of fractional ψ$$ \psi $$‐Hilfer generalized capillary phenomena.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.10495</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4240-1286</orcidid><orcidid>https://orcid.org/0000-0002-9239-4603</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2025-02, Vol.48 (3), p.3448-3470
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_3155058041
source Wiley Online Library Journals Frontfile Complete
subjects Boundary conditions
Capillarity
capillary phenomena
generalized ψ$$ \psi $$‐Hilfer derivative
Laplace transforms
Nehari manifold
Nonlinearity
Operators (mathematics)
variational approach
title On a class of generalized capillarity system involving fractional ψ#x02010;Hilfer derivative with p(·)‐Laplacian operator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20class%20of%20generalized%20capillarity%20system%20involving%20fractional%20%CF%88%23x02010;Hilfer%20derivative%20with%20p(%C2%B7)%E2%80%90Laplacian%20operator&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Arhrrabi,%20Elhoussain&rft.date=2025-02&rft.volume=48&rft.issue=3&rft.spage=3448&rft.epage=3470&rft.pages=3448-3470&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.10495&rft_dat=%3Cproquest_cross%3E3155058041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3155058041&rft_id=info:pmid/&rfr_iscdi=true