On a class of generalized capillarity system involving fractional ψ#x02010;Hilfer derivative with p(·)‐Laplacian operator
This research delves into a comprehensive investigation of a class of ψ$$ \psi $$‐Hilfer generalized fractional nonlinear differential system originated from a capillarity phenomena with Dirichlet boundary conditions, focusing on issues of existence and multiplicity of nonnegative solutions. The non...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2025-02, Vol.48 (3), p.3448-3470 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3470 |
---|---|
container_issue | 3 |
container_start_page | 3448 |
container_title | Mathematical methods in the applied sciences |
container_volume | 48 |
creator | Arhrrabi, Elhoussain El‐Houari, Hamza |
description | This research delves into a comprehensive investigation of a class of
ψ$$ \psi $$‐Hilfer generalized fractional nonlinear differential system originated from a capillarity phenomena with Dirichlet boundary conditions, focusing on issues of existence and multiplicity of nonnegative solutions. The nonlinearity of the problem, in general, does not satisfy the Ambrosetti–Rabinowitz type condition. We use minimization arguments of Nehari manifold together with variational approach to show the existence and multiplicity of positive solutions of our problem with respect to the parameter
ξ$$ \xi $$ in appropriate fractional
ψ$$ \psi $$‐Hilfer spaces. Our main result is novel, and its investigation will enhance the scope of the literature on coupled systems of fractional
ψ$$ \psi $$‐Hilfer generalized capillary phenomena. |
doi_str_mv | 10.1002/mma.10495 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3155058041</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3155058041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1025-952303de89c62ad6dd2a0b0cea8dd7176aa0fedd3a609c740977975345fbcf113</originalsourceid><addsrcrecordid>eNp1kDtOAzEQhi0EEiFQcANLaaBYMt73iiqKgCAlSgP1amJ7gyPvA3uzIUhIlJTchp4LcAdOwoalpZq_-Gb-0UfIKYMLBuAO8xzb4CfBHukxSBKH-VG4T3rAInB8l_mH5MjaFQDEjLk98jIvKFKu0VpaZnQpC2lQq2cpKMdKaY1G1Vtqt7aWOVVFU-pGFUuaGeS1KgvU9Ott8AQuMLicKJ1JQ4U0qsFaNZJuVP1Aq7PPj_Pv1_cpVhq5woKWVdtSl-aYHGSorTz5m31yf311N5440_nN7Xg0dTgDN3CSwPXAEzJOeOiiCIVwERbAJcZCRCwKESGTQngYQsIjH5IoSqLA84NswTPGvD4ZdHcrUz6upa3TVbk27fM29VgQQBCDv6POO4qb0lojs7QyKkezTRmkO7tpazf9tduyw47dKC23_4PpbDbqNn4A5Sl-pg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3155058041</pqid></control><display><type>article</type><title>On a class of generalized capillarity system involving fractional ψ#x02010;Hilfer derivative with p(·)‐Laplacian operator</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Arhrrabi, Elhoussain ; El‐Houari, Hamza</creator><creatorcontrib>Arhrrabi, Elhoussain ; El‐Houari, Hamza</creatorcontrib><description>This research delves into a comprehensive investigation of a class of
ψ$$ \psi $$‐Hilfer generalized fractional nonlinear differential system originated from a capillarity phenomena with Dirichlet boundary conditions, focusing on issues of existence and multiplicity of nonnegative solutions. The nonlinearity of the problem, in general, does not satisfy the Ambrosetti–Rabinowitz type condition. We use minimization arguments of Nehari manifold together with variational approach to show the existence and multiplicity of positive solutions of our problem with respect to the parameter
ξ$$ \xi $$ in appropriate fractional
ψ$$ \psi $$‐Hilfer spaces. Our main result is novel, and its investigation will enhance the scope of the literature on coupled systems of fractional
ψ$$ \psi $$‐Hilfer generalized capillary phenomena.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.10495</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Boundary conditions ; Capillarity ; capillary phenomena ; generalized ψ$$ \psi $$‐Hilfer derivative ; Laplace transforms ; Nehari manifold ; Nonlinearity ; Operators (mathematics) ; variational approach</subject><ispartof>Mathematical methods in the applied sciences, 2025-02, Vol.48 (3), p.3448-3470</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>2025 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1025-952303de89c62ad6dd2a0b0cea8dd7176aa0fedd3a609c740977975345fbcf113</cites><orcidid>0000-0003-4240-1286 ; 0000-0002-9239-4603</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.10495$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.10495$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Arhrrabi, Elhoussain</creatorcontrib><creatorcontrib>El‐Houari, Hamza</creatorcontrib><title>On a class of generalized capillarity system involving fractional ψ#x02010;Hilfer derivative with p(·)‐Laplacian operator</title><title>Mathematical methods in the applied sciences</title><description>This research delves into a comprehensive investigation of a class of
ψ$$ \psi $$‐Hilfer generalized fractional nonlinear differential system originated from a capillarity phenomena with Dirichlet boundary conditions, focusing on issues of existence and multiplicity of nonnegative solutions. The nonlinearity of the problem, in general, does not satisfy the Ambrosetti–Rabinowitz type condition. We use minimization arguments of Nehari manifold together with variational approach to show the existence and multiplicity of positive solutions of our problem with respect to the parameter
ξ$$ \xi $$ in appropriate fractional
ψ$$ \psi $$‐Hilfer spaces. Our main result is novel, and its investigation will enhance the scope of the literature on coupled systems of fractional
ψ$$ \psi $$‐Hilfer generalized capillary phenomena.</description><subject>Boundary conditions</subject><subject>Capillarity</subject><subject>capillary phenomena</subject><subject>generalized ψ$$ \psi $$‐Hilfer derivative</subject><subject>Laplace transforms</subject><subject>Nehari manifold</subject><subject>Nonlinearity</subject><subject>Operators (mathematics)</subject><subject>variational approach</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp1kDtOAzEQhi0EEiFQcANLaaBYMt73iiqKgCAlSgP1amJ7gyPvA3uzIUhIlJTchp4LcAdOwoalpZq_-Gb-0UfIKYMLBuAO8xzb4CfBHukxSBKH-VG4T3rAInB8l_mH5MjaFQDEjLk98jIvKFKu0VpaZnQpC2lQq2cpKMdKaY1G1Vtqt7aWOVVFU-pGFUuaGeS1KgvU9Ott8AQuMLicKJ1JQ4U0qsFaNZJuVP1Aq7PPj_Pv1_cpVhq5woKWVdtSl-aYHGSorTz5m31yf311N5440_nN7Xg0dTgDN3CSwPXAEzJOeOiiCIVwERbAJcZCRCwKESGTQngYQsIjH5IoSqLA84NswTPGvD4ZdHcrUz6upa3TVbk27fM29VgQQBCDv6POO4qb0lojs7QyKkezTRmkO7tpazf9tduyw47dKC23_4PpbDbqNn4A5Sl-pg</recordid><startdate>202502</startdate><enddate>202502</enddate><creator>Arhrrabi, Elhoussain</creator><creator>El‐Houari, Hamza</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-4240-1286</orcidid><orcidid>https://orcid.org/0000-0002-9239-4603</orcidid></search><sort><creationdate>202502</creationdate><title>On a class of generalized capillarity system involving fractional ψ#x02010;Hilfer derivative with p(·)‐Laplacian operator</title><author>Arhrrabi, Elhoussain ; El‐Houari, Hamza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1025-952303de89c62ad6dd2a0b0cea8dd7176aa0fedd3a609c740977975345fbcf113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Boundary conditions</topic><topic>Capillarity</topic><topic>capillary phenomena</topic><topic>generalized ψ$$ \psi $$‐Hilfer derivative</topic><topic>Laplace transforms</topic><topic>Nehari manifold</topic><topic>Nonlinearity</topic><topic>Operators (mathematics)</topic><topic>variational approach</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arhrrabi, Elhoussain</creatorcontrib><creatorcontrib>El‐Houari, Hamza</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arhrrabi, Elhoussain</au><au>El‐Houari, Hamza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a class of generalized capillarity system involving fractional ψ#x02010;Hilfer derivative with p(·)‐Laplacian operator</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2025-02</date><risdate>2025</risdate><volume>48</volume><issue>3</issue><spage>3448</spage><epage>3470</epage><pages>3448-3470</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>This research delves into a comprehensive investigation of a class of
ψ$$ \psi $$‐Hilfer generalized fractional nonlinear differential system originated from a capillarity phenomena with Dirichlet boundary conditions, focusing on issues of existence and multiplicity of nonnegative solutions. The nonlinearity of the problem, in general, does not satisfy the Ambrosetti–Rabinowitz type condition. We use minimization arguments of Nehari manifold together with variational approach to show the existence and multiplicity of positive solutions of our problem with respect to the parameter
ξ$$ \xi $$ in appropriate fractional
ψ$$ \psi $$‐Hilfer spaces. Our main result is novel, and its investigation will enhance the scope of the literature on coupled systems of fractional
ψ$$ \psi $$‐Hilfer generalized capillary phenomena.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.10495</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0003-4240-1286</orcidid><orcidid>https://orcid.org/0000-0002-9239-4603</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2025-02, Vol.48 (3), p.3448-3470 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_3155058041 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Boundary conditions Capillarity capillary phenomena generalized ψ$$ \psi $$‐Hilfer derivative Laplace transforms Nehari manifold Nonlinearity Operators (mathematics) variational approach |
title | On a class of generalized capillarity system involving fractional ψ#x02010;Hilfer derivative with p(·)‐Laplacian operator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A16%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20class%20of%20generalized%20capillarity%20system%20involving%20fractional%20%CF%88%23x02010;Hilfer%20derivative%20with%20p(%C2%B7)%E2%80%90Laplacian%20operator&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Arhrrabi,%20Elhoussain&rft.date=2025-02&rft.volume=48&rft.issue=3&rft.spage=3448&rft.epage=3470&rft.pages=3448-3470&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.10495&rft_dat=%3Cproquest_cross%3E3155058041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3155058041&rft_id=info:pmid/&rfr_iscdi=true |