On the Uniqueness of the Finite-Difference Analogues of the Fundamental Solution of the Heat Equation and the Wave Equation in Discrete Potential Theory
The paper considers the problem of uniquely determining the fundamental solution of the finite-difference analogs of the wave equation and the heat equation in the framework of the discrete potential theory. Finite-difference fundamental solutions of finite-difference analogues of partial differenti...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2024, Vol.64 (12), p.2893-2904 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2904 |
---|---|
container_issue | 12 |
container_start_page | 2893 |
container_title | Computational mathematics and mathematical physics |
container_volume | 64 |
creator | Stepanova, I. E. Kolotov, I. I. Shchepetilov, A. V. Yagola, A. G. Levashov, A. N. |
description | The paper considers the problem of uniquely determining the fundamental solution of the finite-difference analogs of the wave equation and the heat equation in the framework of the discrete potential theory. Finite-difference fundamental solutions of finite-difference analogues of partial differential equations make it possible to solve direct and inverse problems of reconstructing wave and heat sources in various media from heterogeneous and multi-current information about the corresponding physical fields. The article considers formulations with Dirichlet conditions in three- and four-dimensional Cartesian spaces. |
doi_str_mv | 10.1134/S0965542524701707 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3154391270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154391270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1137-7e4abded830a01b089e4b064e3fe03b7a34be7aa1a81e810088952f4e02529893</originalsourceid><addsrcrecordid>eNp1Ud1qwjAYDWODObcH2F1g192SJm3TS_FnDgQHKrssaftVI5pokg58kz3uom54MXb1wfmD7xyEHil5ppTxlxnJ0yThcRLzjNCMZFeoQ5MkidI0ja9R50hHR_4W3Tm3JoSmuWAd9DXV2K8AL7Tat6DBOWyaEzJSWnmIBqppwIKuAPe03JhlCxdJq2u5Be3lBs_MpvXK6F9uDNLj4b6VJ1Dq-oR-yE-4oErjgXKVBQ_43fgQpELSfAXGHu7RTSM3Dh5-bhctRsN5fxxNpq9v_d4kqsLfWZQBl2UNtWBEEloSkQMvScqBNUBYmUnGS8ikpFJQEJQQIfIkbjiQUFUuctZFT-fcnTWhAeeLtWlt-NQVjCac5TTOSFDRs6qyxjkLTbGzaivtoaCkOA5Q_BkgeOKzxwWtXoK9JP9v-gaNp4hS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3154391270</pqid></control><display><type>article</type><title>On the Uniqueness of the Finite-Difference Analogues of the Fundamental Solution of the Heat Equation and the Wave Equation in Discrete Potential Theory</title><source>Springer Nature - Complete Springer Journals</source><creator>Stepanova, I. E. ; Kolotov, I. I. ; Shchepetilov, A. V. ; Yagola, A. G. ; Levashov, A. N.</creator><creatorcontrib>Stepanova, I. E. ; Kolotov, I. I. ; Shchepetilov, A. V. ; Yagola, A. G. ; Levashov, A. N.</creatorcontrib><description>The paper considers the problem of uniquely determining the fundamental solution of the finite-difference analogs of the wave equation and the heat equation in the framework of the discrete potential theory. Finite-difference fundamental solutions of finite-difference analogues of partial differential equations make it possible to solve direct and inverse problems of reconstructing wave and heat sources in various media from heterogeneous and multi-current information about the corresponding physical fields. The article considers formulations with Dirichlet conditions in three- and four-dimensional Cartesian spaces.</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542524701707</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational Mathematics and Numerical Analysis ; Finite difference method ; Heat sources ; Inverse problems ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Potential theory ; Thermodynamics ; Wave equations</subject><ispartof>Computational mathematics and mathematical physics, 2024, Vol.64 (12), p.2893-2904</ispartof><rights>Pleiades Publishing, Ltd. 2024 ISSN 0965-5425, Computational Mathematics and Mathematical Physics, 2024, Vol. 64, No. 12, pp. 2893–2904. © Pleiades Publishing, Ltd., 2024.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1137-7e4abded830a01b089e4b064e3fe03b7a34be7aa1a81e810088952f4e02529893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0965542524701707$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0965542524701707$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Stepanova, I. E.</creatorcontrib><creatorcontrib>Kolotov, I. I.</creatorcontrib><creatorcontrib>Shchepetilov, A. V.</creatorcontrib><creatorcontrib>Yagola, A. G.</creatorcontrib><creatorcontrib>Levashov, A. N.</creatorcontrib><title>On the Uniqueness of the Finite-Difference Analogues of the Fundamental Solution of the Heat Equation and the Wave Equation in Discrete Potential Theory</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>The paper considers the problem of uniquely determining the fundamental solution of the finite-difference analogs of the wave equation and the heat equation in the framework of the discrete potential theory. Finite-difference fundamental solutions of finite-difference analogues of partial differential equations make it possible to solve direct and inverse problems of reconstructing wave and heat sources in various media from heterogeneous and multi-current information about the corresponding physical fields. The article considers formulations with Dirichlet conditions in three- and four-dimensional Cartesian spaces.</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Finite difference method</subject><subject>Heat sources</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Potential theory</subject><subject>Thermodynamics</subject><subject>Wave equations</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1Ud1qwjAYDWODObcH2F1g192SJm3TS_FnDgQHKrssaftVI5pokg58kz3uom54MXb1wfmD7xyEHil5ppTxlxnJ0yThcRLzjNCMZFeoQ5MkidI0ja9R50hHR_4W3Tm3JoSmuWAd9DXV2K8AL7Tat6DBOWyaEzJSWnmIBqppwIKuAPe03JhlCxdJq2u5Be3lBs_MpvXK6F9uDNLj4b6VJ1Dq-oR-yE-4oErjgXKVBQ_43fgQpELSfAXGHu7RTSM3Dh5-bhctRsN5fxxNpq9v_d4kqsLfWZQBl2UNtWBEEloSkQMvScqBNUBYmUnGS8ikpFJQEJQQIfIkbjiQUFUuctZFT-fcnTWhAeeLtWlt-NQVjCac5TTOSFDRs6qyxjkLTbGzaivtoaCkOA5Q_BkgeOKzxwWtXoK9JP9v-gaNp4hS</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Stepanova, I. E.</creator><creator>Kolotov, I. I.</creator><creator>Shchepetilov, A. V.</creator><creator>Yagola, A. G.</creator><creator>Levashov, A. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>2024</creationdate><title>On the Uniqueness of the Finite-Difference Analogues of the Fundamental Solution of the Heat Equation and the Wave Equation in Discrete Potential Theory</title><author>Stepanova, I. E. ; Kolotov, I. I. ; Shchepetilov, A. V. ; Yagola, A. G. ; Levashov, A. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1137-7e4abded830a01b089e4b064e3fe03b7a34be7aa1a81e810088952f4e02529893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Finite difference method</topic><topic>Heat sources</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Potential theory</topic><topic>Thermodynamics</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stepanova, I. E.</creatorcontrib><creatorcontrib>Kolotov, I. I.</creatorcontrib><creatorcontrib>Shchepetilov, A. V.</creatorcontrib><creatorcontrib>Yagola, A. G.</creatorcontrib><creatorcontrib>Levashov, A. N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stepanova, I. E.</au><au>Kolotov, I. I.</au><au>Shchepetilov, A. V.</au><au>Yagola, A. G.</au><au>Levashov, A. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Uniqueness of the Finite-Difference Analogues of the Fundamental Solution of the Heat Equation and the Wave Equation in Discrete Potential Theory</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2024</date><risdate>2024</risdate><volume>64</volume><issue>12</issue><spage>2893</spage><epage>2904</epage><pages>2893-2904</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>The paper considers the problem of uniquely determining the fundamental solution of the finite-difference analogs of the wave equation and the heat equation in the framework of the discrete potential theory. Finite-difference fundamental solutions of finite-difference analogues of partial differential equations make it possible to solve direct and inverse problems of reconstructing wave and heat sources in various media from heterogeneous and multi-current information about the corresponding physical fields. The article considers formulations with Dirichlet conditions in three- and four-dimensional Cartesian spaces.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542524701707</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0965-5425 |
ispartof | Computational mathematics and mathematical physics, 2024, Vol.64 (12), p.2893-2904 |
issn | 0965-5425 1555-6662 |
language | eng |
recordid | cdi_proquest_journals_3154391270 |
source | Springer Nature - Complete Springer Journals |
subjects | Computational Mathematics and Numerical Analysis Finite difference method Heat sources Inverse problems Mathematical analysis Mathematics Mathematics and Statistics Partial Differential Equations Potential theory Thermodynamics Wave equations |
title | On the Uniqueness of the Finite-Difference Analogues of the Fundamental Solution of the Heat Equation and the Wave Equation in Discrete Potential Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Uniqueness%20of%20the%20Finite-Difference%20Analogues%20of%20the%20Fundamental%20Solution%20of%20the%20Heat%20Equation%20and%20the%20Wave%20Equation%20in%20Discrete%20Potential%20Theory&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Stepanova,%20I.%20E.&rft.date=2024&rft.volume=64&rft.issue=12&rft.spage=2893&rft.epage=2904&rft.pages=2893-2904&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542524701707&rft_dat=%3Cproquest_cross%3E3154391270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3154391270&rft_id=info:pmid/&rfr_iscdi=true |