Molecular Design of Mono‐Fluorinated Ether‐Based Electrolyte for All‐Climate Lithium‐Ion Batteries and Lithium‐Metal Batteries

Fluorinated‐ethers are promising electrolyte solvents in lithium metal batteries, for their high antioxidant and excellent reductive stability on Li anode. However, fluorinated‐ethers with high fluorination degree suffer from low ionic conductivity and narrow temperature adaptibility. Herein, we syn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2025-01, Vol.137 (2), p.n/a
Hauptverfasser: Xue, Yejuan, Wang, Yueda, Zhang, Heng, Kong, Weilong, Zhou, Yuxin, Kang, Bo, Huang, Zhimei, Xiang, Hongfa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Angewandte Chemie
container_volume 137
creator Xue, Yejuan
Wang, Yueda
Zhang, Heng
Kong, Weilong
Zhou, Yuxin
Kang, Bo
Huang, Zhimei
Xiang, Hongfa
description Fluorinated‐ethers are promising electrolyte solvents in lithium metal batteries, for their high antioxidant and excellent reductive stability on Li anode. However, fluorinated‐ethers with high fluorination degree suffer from low ionic conductivity and narrow temperature adaptibility. Herein, we synthesize a mono‐fluorinated linear ether of bis(2‐fluoroethoxy) methane (BFME) with enhanced solvated ability. The −OCH2O− structure and fluoride substitution on the β‐C position endows the BFME electrolyte with moderate affinity to Li+, thereby improving the ionic conductivity and decreasing the Li+‐desolvation energy barrier at a wide temperature range of −60–60 °C. Additionally, the electrolyte with anion‐participated solvation structure demonstrates high film‐forming ability by forming LiF‐rich interfacial film on the electrode surfaces, rendering the graphite anode with an initial Coulombic efficiency (CE) of 94.9 % and a Li plating/stripping CE of 99.8 % by Aurbach method. Consequently, the Graphite||LiFePO4 pouch cells delivered 83.2 %, 92.5 % and 81.2 % capacity retention after 1250, 200 and 300 cycles at 25, −20 °C and 60 °C, respectively. Moreover, the Li||LFP pouch cell with 3 Ah capacity can operate for 65 cycles with 99 % capacity retention, verifying the effectiveness of the BFME electrolyte in stabilizing the interfaces and broadening the temperature adaptibility of lithium‐ion and lithium metal batteries. A mono‐fluorinated linear ether of bis(2‐fluoroethoxy) methane (BFME) with OCH2O‐ segment was synthesized as solvent. With signal salt and signal solvent, the electrolyte showed low Li+‐desolvation energy and high anion film‐forming ability at interfaces under −60–60 °C, realizing the reversibly Li+ insertion/extraction process into graphite anode with an initial Coulombic efficiency (CE) of 94.9 % and Li position/stripping CE of 99.8 %.
doi_str_mv 10.1002/ange.202414201
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3154029014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154029014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1171-2d37ca6bc3426352fc1c19f660dfb4f778487ddd340c092fdb0319311edede0c3</originalsourceid><addsrcrecordid>eNqFULlOAzEQtRBIhKOltkS9YcZ2drNlCOGQEmigXjk-YJFZg-0VSkdJyTfyJTgKAjo0xWjeMaN5hBwhDBGAncju3gwZMIGCAW6RAY4YFrwaVdtkACBEMWai3iV7MT4CQMmqekDeF94Z1TsZ6JmJ7X1HvaUL3_nPt49z1_vQdjIZTWfpwYSMncq4nrInBe9WyVDrA504l7mpa5-ymM7b9ND2Txm58h09lSmZ0JpIZaf_cAuTpPtlD8iOlS6aw---T-7OZ7fTy2J-c3E1ncwLhVhhwTSvlCyXigtW8hGzChXWtixB26WwVTUW40przQUoqJnVS-BYc0Sjc4Hi--R4s_c5-JfexNQ8-j50-WTDcSSA1YAiq4YblQo-xmBs8xzyc2HVIDTrtJt12s1P2tlQbwyvrTOrf9TN5Ppi9uv9AtN-ihU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3154029014</pqid></control><display><type>article</type><title>Molecular Design of Mono‐Fluorinated Ether‐Based Electrolyte for All‐Climate Lithium‐Ion Batteries and Lithium‐Metal Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xue, Yejuan ; Wang, Yueda ; Zhang, Heng ; Kong, Weilong ; Zhou, Yuxin ; Kang, Bo ; Huang, Zhimei ; Xiang, Hongfa</creator><creatorcontrib>Xue, Yejuan ; Wang, Yueda ; Zhang, Heng ; Kong, Weilong ; Zhou, Yuxin ; Kang, Bo ; Huang, Zhimei ; Xiang, Hongfa</creatorcontrib><description>Fluorinated‐ethers are promising electrolyte solvents in lithium metal batteries, for their high antioxidant and excellent reductive stability on Li anode. However, fluorinated‐ethers with high fluorination degree suffer from low ionic conductivity and narrow temperature adaptibility. Herein, we synthesize a mono‐fluorinated linear ether of bis(2‐fluoroethoxy) methane (BFME) with enhanced solvated ability. The −OCH2O− structure and fluoride substitution on the β‐C position endows the BFME electrolyte with moderate affinity to Li+, thereby improving the ionic conductivity and decreasing the Li+‐desolvation energy barrier at a wide temperature range of −60–60 °C. Additionally, the electrolyte with anion‐participated solvation structure demonstrates high film‐forming ability by forming LiF‐rich interfacial film on the electrode surfaces, rendering the graphite anode with an initial Coulombic efficiency (CE) of 94.9 % and a Li plating/stripping CE of 99.8 % by Aurbach method. Consequently, the Graphite||LiFePO4 pouch cells delivered 83.2 %, 92.5 % and 81.2 % capacity retention after 1250, 200 and 300 cycles at 25, −20 °C and 60 °C, respectively. Moreover, the Li||LFP pouch cell with 3 Ah capacity can operate for 65 cycles with 99 % capacity retention, verifying the effectiveness of the BFME electrolyte in stabilizing the interfaces and broadening the temperature adaptibility of lithium‐ion and lithium metal batteries. A mono‐fluorinated linear ether of bis(2‐fluoroethoxy) methane (BFME) with OCH2O‐ segment was synthesized as solvent. With signal salt and signal solvent, the electrolyte showed low Li+‐desolvation energy and high anion film‐forming ability at interfaces under −60–60 °C, realizing the reversibly Li+ insertion/extraction process into graphite anode with an initial Coulombic efficiency (CE) of 94.9 % and Li position/stripping CE of 99.8 %.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202414201</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Conductivity ; Electrolytes ; Electrolytic cells ; Ethers ; Fluorinated-ether electrolyte ; Fluorination ; Graphite ; graphite anode ; Ion currents ; Li metal anode ; Lithium ; Lithium batteries ; Lithium-ion batteries ; Retention ; Solvation ; wide-temperature electrolyte</subject><ispartof>Angewandte Chemie, 2025-01, Vol.137 (2), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2025 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1171-2d37ca6bc3426352fc1c19f660dfb4f778487ddd340c092fdb0319311edede0c3</cites><orcidid>0000-0001-9333-8008</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202414201$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202414201$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Xue, Yejuan</creatorcontrib><creatorcontrib>Wang, Yueda</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Kong, Weilong</creatorcontrib><creatorcontrib>Zhou, Yuxin</creatorcontrib><creatorcontrib>Kang, Bo</creatorcontrib><creatorcontrib>Huang, Zhimei</creatorcontrib><creatorcontrib>Xiang, Hongfa</creatorcontrib><title>Molecular Design of Mono‐Fluorinated Ether‐Based Electrolyte for All‐Climate Lithium‐Ion Batteries and Lithium‐Metal Batteries</title><title>Angewandte Chemie</title><description>Fluorinated‐ethers are promising electrolyte solvents in lithium metal batteries, for their high antioxidant and excellent reductive stability on Li anode. However, fluorinated‐ethers with high fluorination degree suffer from low ionic conductivity and narrow temperature adaptibility. Herein, we synthesize a mono‐fluorinated linear ether of bis(2‐fluoroethoxy) methane (BFME) with enhanced solvated ability. The −OCH2O− structure and fluoride substitution on the β‐C position endows the BFME electrolyte with moderate affinity to Li+, thereby improving the ionic conductivity and decreasing the Li+‐desolvation energy barrier at a wide temperature range of −60–60 °C. Additionally, the electrolyte with anion‐participated solvation structure demonstrates high film‐forming ability by forming LiF‐rich interfacial film on the electrode surfaces, rendering the graphite anode with an initial Coulombic efficiency (CE) of 94.9 % and a Li plating/stripping CE of 99.8 % by Aurbach method. Consequently, the Graphite||LiFePO4 pouch cells delivered 83.2 %, 92.5 % and 81.2 % capacity retention after 1250, 200 and 300 cycles at 25, −20 °C and 60 °C, respectively. Moreover, the Li||LFP pouch cell with 3 Ah capacity can operate for 65 cycles with 99 % capacity retention, verifying the effectiveness of the BFME electrolyte in stabilizing the interfaces and broadening the temperature adaptibility of lithium‐ion and lithium metal batteries. A mono‐fluorinated linear ether of bis(2‐fluoroethoxy) methane (BFME) with OCH2O‐ segment was synthesized as solvent. With signal salt and signal solvent, the electrolyte showed low Li+‐desolvation energy and high anion film‐forming ability at interfaces under −60–60 °C, realizing the reversibly Li+ insertion/extraction process into graphite anode with an initial Coulombic efficiency (CE) of 94.9 % and Li position/stripping CE of 99.8 %.</description><subject>Conductivity</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Ethers</subject><subject>Fluorinated-ether electrolyte</subject><subject>Fluorination</subject><subject>Graphite</subject><subject>graphite anode</subject><subject>Ion currents</subject><subject>Li metal anode</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>Lithium-ion batteries</subject><subject>Retention</subject><subject>Solvation</subject><subject>wide-temperature electrolyte</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFULlOAzEQtRBIhKOltkS9YcZ2drNlCOGQEmigXjk-YJFZg-0VSkdJyTfyJTgKAjo0xWjeMaN5hBwhDBGAncju3gwZMIGCAW6RAY4YFrwaVdtkACBEMWai3iV7MT4CQMmqekDeF94Z1TsZ6JmJ7X1HvaUL3_nPt49z1_vQdjIZTWfpwYSMncq4nrInBe9WyVDrA504l7mpa5-ymM7b9ND2Txm58h09lSmZ0JpIZaf_cAuTpPtlD8iOlS6aw---T-7OZ7fTy2J-c3E1ncwLhVhhwTSvlCyXigtW8hGzChXWtixB26WwVTUW40przQUoqJnVS-BYc0Sjc4Hi--R4s_c5-JfexNQ8-j50-WTDcSSA1YAiq4YblQo-xmBs8xzyc2HVIDTrtJt12s1P2tlQbwyvrTOrf9TN5Ppi9uv9AtN-ihU</recordid><startdate>20250110</startdate><enddate>20250110</enddate><creator>Xue, Yejuan</creator><creator>Wang, Yueda</creator><creator>Zhang, Heng</creator><creator>Kong, Weilong</creator><creator>Zhou, Yuxin</creator><creator>Kang, Bo</creator><creator>Huang, Zhimei</creator><creator>Xiang, Hongfa</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9333-8008</orcidid></search><sort><creationdate>20250110</creationdate><title>Molecular Design of Mono‐Fluorinated Ether‐Based Electrolyte for All‐Climate Lithium‐Ion Batteries and Lithium‐Metal Batteries</title><author>Xue, Yejuan ; Wang, Yueda ; Zhang, Heng ; Kong, Weilong ; Zhou, Yuxin ; Kang, Bo ; Huang, Zhimei ; Xiang, Hongfa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1171-2d37ca6bc3426352fc1c19f660dfb4f778487ddd340c092fdb0319311edede0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Conductivity</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Ethers</topic><topic>Fluorinated-ether electrolyte</topic><topic>Fluorination</topic><topic>Graphite</topic><topic>graphite anode</topic><topic>Ion currents</topic><topic>Li metal anode</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>Lithium-ion batteries</topic><topic>Retention</topic><topic>Solvation</topic><topic>wide-temperature electrolyte</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Yejuan</creatorcontrib><creatorcontrib>Wang, Yueda</creatorcontrib><creatorcontrib>Zhang, Heng</creatorcontrib><creatorcontrib>Kong, Weilong</creatorcontrib><creatorcontrib>Zhou, Yuxin</creatorcontrib><creatorcontrib>Kang, Bo</creatorcontrib><creatorcontrib>Huang, Zhimei</creatorcontrib><creatorcontrib>Xiang, Hongfa</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Yejuan</au><au>Wang, Yueda</au><au>Zhang, Heng</au><au>Kong, Weilong</au><au>Zhou, Yuxin</au><au>Kang, Bo</au><au>Huang, Zhimei</au><au>Xiang, Hongfa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Design of Mono‐Fluorinated Ether‐Based Electrolyte for All‐Climate Lithium‐Ion Batteries and Lithium‐Metal Batteries</atitle><jtitle>Angewandte Chemie</jtitle><date>2025-01-10</date><risdate>2025</risdate><volume>137</volume><issue>2</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Fluorinated‐ethers are promising electrolyte solvents in lithium metal batteries, for their high antioxidant and excellent reductive stability on Li anode. However, fluorinated‐ethers with high fluorination degree suffer from low ionic conductivity and narrow temperature adaptibility. Herein, we synthesize a mono‐fluorinated linear ether of bis(2‐fluoroethoxy) methane (BFME) with enhanced solvated ability. The −OCH2O− structure and fluoride substitution on the β‐C position endows the BFME electrolyte with moderate affinity to Li+, thereby improving the ionic conductivity and decreasing the Li+‐desolvation energy barrier at a wide temperature range of −60–60 °C. Additionally, the electrolyte with anion‐participated solvation structure demonstrates high film‐forming ability by forming LiF‐rich interfacial film on the electrode surfaces, rendering the graphite anode with an initial Coulombic efficiency (CE) of 94.9 % and a Li plating/stripping CE of 99.8 % by Aurbach method. Consequently, the Graphite||LiFePO4 pouch cells delivered 83.2 %, 92.5 % and 81.2 % capacity retention after 1250, 200 and 300 cycles at 25, −20 °C and 60 °C, respectively. Moreover, the Li||LFP pouch cell with 3 Ah capacity can operate for 65 cycles with 99 % capacity retention, verifying the effectiveness of the BFME electrolyte in stabilizing the interfaces and broadening the temperature adaptibility of lithium‐ion and lithium metal batteries. A mono‐fluorinated linear ether of bis(2‐fluoroethoxy) methane (BFME) with OCH2O‐ segment was synthesized as solvent. With signal salt and signal solvent, the electrolyte showed low Li+‐desolvation energy and high anion film‐forming ability at interfaces under −60–60 °C, realizing the reversibly Li+ insertion/extraction process into graphite anode with an initial Coulombic efficiency (CE) of 94.9 % and Li position/stripping CE of 99.8 %.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202414201</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9333-8008</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2025-01, Vol.137 (2), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_3154029014
source Wiley Online Library Journals Frontfile Complete
subjects Conductivity
Electrolytes
Electrolytic cells
Ethers
Fluorinated-ether electrolyte
Fluorination
Graphite
graphite anode
Ion currents
Li metal anode
Lithium
Lithium batteries
Lithium-ion batteries
Retention
Solvation
wide-temperature electrolyte
title Molecular Design of Mono‐Fluorinated Ether‐Based Electrolyte for All‐Climate Lithium‐Ion Batteries and Lithium‐Metal Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T07%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Design%20of%20Mono%E2%80%90Fluorinated%20Ether%E2%80%90Based%20Electrolyte%20for%20All%E2%80%90Climate%20Lithium%E2%80%90Ion%20Batteries%20and%20Lithium%E2%80%90Metal%20Batteries&rft.jtitle=Angewandte%20Chemie&rft.au=Xue,%20Yejuan&rft.date=2025-01-10&rft.volume=137&rft.issue=2&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202414201&rft_dat=%3Cproquest_cross%3E3154029014%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3154029014&rft_id=info:pmid/&rfr_iscdi=true