Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries from −80 °C to 80 °C
Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast‐charging capability and low‐temperature performance of LFP/graphite batteries serious...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2025-01, Vol.137 (2), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 137 |
creator | Li, Zeheng Yao, Yu‐Xing Zheng, Mengting Sun, Shuo Yang, Yi Xiao, Ye Xu, Lei Jin, Cheng‐Bin Yue, Xin‐Yang Song, Tinglu Wu, Peng Yan, Chong Zhang, Qiang |
description | Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast‐charging capability and low‐temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial lithium (Li)‐ion transport. Here we report a wide‐temperature‐range ester‐based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three‐electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of −80 °C to 80 °C and outstanding fast‐charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2 % capacity retention after 1200 cycles (2 C) and 10‐min charge to 89 % (5 C) at 25 °C and provide reliable power even at −80 °C.
All‐climate batteries from −80 °C to 80 °C: A wide‐temperature electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability is proposed. The proposed electrolyte significantly alleviates the Li plating and interfacial degradation of LiFePO4 (LFP)/graphite cells at ultralow temperatures. The LFP/graphite cells exhibit an ultra‐wide operating‐temperature range of −80 °C to 80 °C and outstanding fast‐charging capability. |
doi_str_mv | 10.1002/ange.202409409 |
format | Article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3154026302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154026302</sourcerecordid><originalsourceid>FETCH-LOGICAL-p789-91df13383f50d29e008a13ddab4ef857f92f9b817a6872d6581be745c6872f6e3</originalsourceid><addsrcrecordid>eNo9kM9Kw0AQhxdRsFavngOeY2f_JLt7rDWtQrEivS-bZtKmpEncpEhvHvXqk_gMPkqfxIRqYeA3H3zMwI-Qawq3FIANbLHEWwZMgG7nhPRowKjPZSBPSQ9ACF8xoc_JRV2vASBkUveIiXJcNK7Mdw1691hny8KLChvnWHsvuFhZt8SOvGk2xueZGEycrVZZK9_ZpkGXtV7qyo23__hSsH___PkeeU3p_e-X5Cy1eY1Xf9kn83E0Hz3409nkcTSc-pVU2tc0SSnniqcBJEwjgLKUJ4mNBaYqkKlmqY4VlTZUkiVhoGiMUgSLDtMQeZ_cHM5WrnzdYt2Ydbl1RfvRcBoIYCEH1lr6YL1lOe5M5bKNdTtDwXQFmq5AcyzQDJ8m0ZH4LwLwaQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3154026302</pqid></control><display><type>article</type><title>Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries from −80 °C to 80 °C</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Zeheng ; Yao, Yu‐Xing ; Zheng, Mengting ; Sun, Shuo ; Yang, Yi ; Xiao, Ye ; Xu, Lei ; Jin, Cheng‐Bin ; Yue, Xin‐Yang ; Song, Tinglu ; Wu, Peng ; Yan, Chong ; Zhang, Qiang</creator><creatorcontrib>Li, Zeheng ; Yao, Yu‐Xing ; Zheng, Mengting ; Sun, Shuo ; Yang, Yi ; Xiao, Ye ; Xu, Lei ; Jin, Cheng‐Bin ; Yue, Xin‐Yang ; Song, Tinglu ; Wu, Peng ; Yan, Chong ; Zhang, Qiang</creatorcontrib><description>Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast‐charging capability and low‐temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial lithium (Li)‐ion transport. Here we report a wide‐temperature‐range ester‐based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three‐electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of −80 °C to 80 °C and outstanding fast‐charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2 % capacity retention after 1200 cycles (2 C) and 10‐min charge to 89 % (5 C) at 25 °C and provide reliable power even at −80 °C.
All‐climate batteries from −80 °C to 80 °C: A wide‐temperature electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability is proposed. The proposed electrolyte significantly alleviates the Li plating and interfacial degradation of LiFePO4 (LFP)/graphite cells at ultralow temperatures. The LFP/graphite cells exhibit an ultra‐wide operating‐temperature range of −80 °C to 80 °C and outstanding fast‐charging capability.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202409409</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Charging ; Electrolytes ; Electrolytic cells ; Energy storage ; extreme operating condition ; Graphite ; interfacial kinetics ; Ion currents ; Ion transport ; Iron phosphates ; Li0 plating ; Life span ; LiFePO4/graphite batteries ; Lithium ; Relaxation time ; Storage batteries ; wide-temperature electrolyte</subject><ispartof>Angewandte Chemie, 2025-01, Vol.137 (2), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2025 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3929-1541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202409409$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202409409$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Zeheng</creatorcontrib><creatorcontrib>Yao, Yu‐Xing</creatorcontrib><creatorcontrib>Zheng, Mengting</creatorcontrib><creatorcontrib>Sun, Shuo</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Xiao, Ye</creatorcontrib><creatorcontrib>Xu, Lei</creatorcontrib><creatorcontrib>Jin, Cheng‐Bin</creatorcontrib><creatorcontrib>Yue, Xin‐Yang</creatorcontrib><creatorcontrib>Song, Tinglu</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Yan, Chong</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><title>Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries from −80 °C to 80 °C</title><title>Angewandte Chemie</title><description>Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast‐charging capability and low‐temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial lithium (Li)‐ion transport. Here we report a wide‐temperature‐range ester‐based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three‐electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of −80 °C to 80 °C and outstanding fast‐charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2 % capacity retention after 1200 cycles (2 C) and 10‐min charge to 89 % (5 C) at 25 °C and provide reliable power even at −80 °C.
All‐climate batteries from −80 °C to 80 °C: A wide‐temperature electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability is proposed. The proposed electrolyte significantly alleviates the Li plating and interfacial degradation of LiFePO4 (LFP)/graphite cells at ultralow temperatures. The LFP/graphite cells exhibit an ultra‐wide operating‐temperature range of −80 °C to 80 °C and outstanding fast‐charging capability.</description><subject>Batteries</subject><subject>Charging</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy storage</subject><subject>extreme operating condition</subject><subject>Graphite</subject><subject>interfacial kinetics</subject><subject>Ion currents</subject><subject>Ion transport</subject><subject>Iron phosphates</subject><subject>Li0 plating</subject><subject>Life span</subject><subject>LiFePO4/graphite batteries</subject><subject>Lithium</subject><subject>Relaxation time</subject><subject>Storage batteries</subject><subject>wide-temperature electrolyte</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9kM9Kw0AQhxdRsFavngOeY2f_JLt7rDWtQrEivS-bZtKmpEncpEhvHvXqk_gMPkqfxIRqYeA3H3zMwI-Qawq3FIANbLHEWwZMgG7nhPRowKjPZSBPSQ9ACF8xoc_JRV2vASBkUveIiXJcNK7Mdw1691hny8KLChvnWHsvuFhZt8SOvGk2xueZGEycrVZZK9_ZpkGXtV7qyo23__hSsH___PkeeU3p_e-X5Cy1eY1Xf9kn83E0Hz3409nkcTSc-pVU2tc0SSnniqcBJEwjgLKUJ4mNBaYqkKlmqY4VlTZUkiVhoGiMUgSLDtMQeZ_cHM5WrnzdYt2Ydbl1RfvRcBoIYCEH1lr6YL1lOe5M5bKNdTtDwXQFmq5AcyzQDJ8m0ZH4LwLwaQI</recordid><startdate>20250110</startdate><enddate>20250110</enddate><creator>Li, Zeheng</creator><creator>Yao, Yu‐Xing</creator><creator>Zheng, Mengting</creator><creator>Sun, Shuo</creator><creator>Yang, Yi</creator><creator>Xiao, Ye</creator><creator>Xu, Lei</creator><creator>Jin, Cheng‐Bin</creator><creator>Yue, Xin‐Yang</creator><creator>Song, Tinglu</creator><creator>Wu, Peng</creator><creator>Yan, Chong</creator><creator>Zhang, Qiang</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3929-1541</orcidid></search><sort><creationdate>20250110</creationdate><title>Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries from −80 °C to 80 °C</title><author>Li, Zeheng ; Yao, Yu‐Xing ; Zheng, Mengting ; Sun, Shuo ; Yang, Yi ; Xiao, Ye ; Xu, Lei ; Jin, Cheng‐Bin ; Yue, Xin‐Yang ; Song, Tinglu ; Wu, Peng ; Yan, Chong ; Zhang, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p789-91df13383f50d29e008a13ddab4ef857f92f9b817a6872d6581be745c6872f6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Batteries</topic><topic>Charging</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy storage</topic><topic>extreme operating condition</topic><topic>Graphite</topic><topic>interfacial kinetics</topic><topic>Ion currents</topic><topic>Ion transport</topic><topic>Iron phosphates</topic><topic>Li0 plating</topic><topic>Life span</topic><topic>LiFePO4/graphite batteries</topic><topic>Lithium</topic><topic>Relaxation time</topic><topic>Storage batteries</topic><topic>wide-temperature electrolyte</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zeheng</creatorcontrib><creatorcontrib>Yao, Yu‐Xing</creatorcontrib><creatorcontrib>Zheng, Mengting</creatorcontrib><creatorcontrib>Sun, Shuo</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Xiao, Ye</creatorcontrib><creatorcontrib>Xu, Lei</creatorcontrib><creatorcontrib>Jin, Cheng‐Bin</creatorcontrib><creatorcontrib>Yue, Xin‐Yang</creatorcontrib><creatorcontrib>Song, Tinglu</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Yan, Chong</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zeheng</au><au>Yao, Yu‐Xing</au><au>Zheng, Mengting</au><au>Sun, Shuo</au><au>Yang, Yi</au><au>Xiao, Ye</au><au>Xu, Lei</au><au>Jin, Cheng‐Bin</au><au>Yue, Xin‐Yang</au><au>Song, Tinglu</au><au>Wu, Peng</au><au>Yan, Chong</au><au>Zhang, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries from −80 °C to 80 °C</atitle><jtitle>Angewandte Chemie</jtitle><date>2025-01-10</date><risdate>2025</risdate><volume>137</volume><issue>2</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast‐charging capability and low‐temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial lithium (Li)‐ion transport. Here we report a wide‐temperature‐range ester‐based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three‐electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of −80 °C to 80 °C and outstanding fast‐charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2 % capacity retention after 1200 cycles (2 C) and 10‐min charge to 89 % (5 C) at 25 °C and provide reliable power even at −80 °C.
All‐climate batteries from −80 °C to 80 °C: A wide‐temperature electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability is proposed. The proposed electrolyte significantly alleviates the Li plating and interfacial degradation of LiFePO4 (LFP)/graphite cells at ultralow temperatures. The LFP/graphite cells exhibit an ultra‐wide operating‐temperature range of −80 °C to 80 °C and outstanding fast‐charging capability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202409409</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3929-1541</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2025-01, Vol.137 (2), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_journals_3154026302 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Batteries Charging Electrolytes Electrolytic cells Energy storage extreme operating condition Graphite interfacial kinetics Ion currents Ion transport Iron phosphates Li0 plating Life span LiFePO4/graphite batteries Lithium Relaxation time Storage batteries wide-temperature electrolyte |
title | Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries from −80 °C to 80 °C |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A19%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrolyte%20Design%20Enables%20Rechargeable%20LiFePO4/Graphite%20Batteries%20from%20%E2%88%9280%E2%80%89%C2%B0C%20to%2080%E2%80%89%C2%B0C&rft.jtitle=Angewandte%20Chemie&rft.au=Li,%20Zeheng&rft.date=2025-01-10&rft.volume=137&rft.issue=2&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202409409&rft_dat=%3Cproquest_wiley%3E3154026302%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3154026302&rft_id=info:pmid/&rfr_iscdi=true |