Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries from −80 °C to 80 °C

Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast‐charging capability and low‐temperature performance of LFP/graphite batteries serious...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2025-01, Vol.137 (2), p.n/a
Hauptverfasser: Li, Zeheng, Yao, Yu‐Xing, Zheng, Mengting, Sun, Shuo, Yang, Yi, Xiao, Ye, Xu, Lei, Jin, Cheng‐Bin, Yue, Xin‐Yang, Song, Tinglu, Wu, Peng, Yan, Chong, Zhang, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Angewandte Chemie
container_volume 137
creator Li, Zeheng
Yao, Yu‐Xing
Zheng, Mengting
Sun, Shuo
Yang, Yi
Xiao, Ye
Xu, Lei
Jin, Cheng‐Bin
Yue, Xin‐Yang
Song, Tinglu
Wu, Peng
Yan, Chong
Zhang, Qiang
description Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast‐charging capability and low‐temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial lithium (Li)‐ion transport. Here we report a wide‐temperature‐range ester‐based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three‐electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of −80 °C to 80 °C and outstanding fast‐charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2 % capacity retention after 1200 cycles (2 C) and 10‐min charge to 89 % (5 C) at 25 °C and provide reliable power even at −80 °C. All‐climate batteries from −80 °C to 80 °C: A wide‐temperature electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability is proposed. The proposed electrolyte significantly alleviates the Li plating and interfacial degradation of LiFePO4 (LFP)/graphite cells at ultralow temperatures. The LFP/graphite cells exhibit an ultra‐wide operating‐temperature range of −80 °C to 80 °C and outstanding fast‐charging capability.
doi_str_mv 10.1002/ange.202409409
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_3154026302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3154026302</sourcerecordid><originalsourceid>FETCH-LOGICAL-p789-91df13383f50d29e008a13ddab4ef857f92f9b817a6872d6581be745c6872f6e3</originalsourceid><addsrcrecordid>eNo9kM9Kw0AQhxdRsFavngOeY2f_JLt7rDWtQrEivS-bZtKmpEncpEhvHvXqk_gMPkqfxIRqYeA3H3zMwI-Qawq3FIANbLHEWwZMgG7nhPRowKjPZSBPSQ9ACF8xoc_JRV2vASBkUveIiXJcNK7Mdw1691hny8KLChvnWHsvuFhZt8SOvGk2xueZGEycrVZZK9_ZpkGXtV7qyo23__hSsH___PkeeU3p_e-X5Cy1eY1Xf9kn83E0Hz3409nkcTSc-pVU2tc0SSnniqcBJEwjgLKUJ4mNBaYqkKlmqY4VlTZUkiVhoGiMUgSLDtMQeZ_cHM5WrnzdYt2Ydbl1RfvRcBoIYCEH1lr6YL1lOe5M5bKNdTtDwXQFmq5AcyzQDJ8m0ZH4LwLwaQI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3154026302</pqid></control><display><type>article</type><title>Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries from −80 °C to 80 °C</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Li, Zeheng ; Yao, Yu‐Xing ; Zheng, Mengting ; Sun, Shuo ; Yang, Yi ; Xiao, Ye ; Xu, Lei ; Jin, Cheng‐Bin ; Yue, Xin‐Yang ; Song, Tinglu ; Wu, Peng ; Yan, Chong ; Zhang, Qiang</creator><creatorcontrib>Li, Zeheng ; Yao, Yu‐Xing ; Zheng, Mengting ; Sun, Shuo ; Yang, Yi ; Xiao, Ye ; Xu, Lei ; Jin, Cheng‐Bin ; Yue, Xin‐Yang ; Song, Tinglu ; Wu, Peng ; Yan, Chong ; Zhang, Qiang</creatorcontrib><description>Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast‐charging capability and low‐temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial lithium (Li)‐ion transport. Here we report a wide‐temperature‐range ester‐based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three‐electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of −80 °C to 80 °C and outstanding fast‐charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2 % capacity retention after 1200 cycles (2 C) and 10‐min charge to 89 % (5 C) at 25 °C and provide reliable power even at −80 °C. All‐climate batteries from −80 °C to 80 °C: A wide‐temperature electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability is proposed. The proposed electrolyte significantly alleviates the Li plating and interfacial degradation of LiFePO4 (LFP)/graphite cells at ultralow temperatures. The LFP/graphite cells exhibit an ultra‐wide operating‐temperature range of −80 °C to 80 °C and outstanding fast‐charging capability.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202409409</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Charging ; Electrolytes ; Electrolytic cells ; Energy storage ; extreme operating condition ; Graphite ; interfacial kinetics ; Ion currents ; Ion transport ; Iron phosphates ; Li0 plating ; Life span ; LiFePO4/graphite batteries ; Lithium ; Relaxation time ; Storage batteries ; wide-temperature electrolyte</subject><ispartof>Angewandte Chemie, 2025-01, Vol.137 (2), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2025 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3929-1541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202409409$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202409409$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Li, Zeheng</creatorcontrib><creatorcontrib>Yao, Yu‐Xing</creatorcontrib><creatorcontrib>Zheng, Mengting</creatorcontrib><creatorcontrib>Sun, Shuo</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Xiao, Ye</creatorcontrib><creatorcontrib>Xu, Lei</creatorcontrib><creatorcontrib>Jin, Cheng‐Bin</creatorcontrib><creatorcontrib>Yue, Xin‐Yang</creatorcontrib><creatorcontrib>Song, Tinglu</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Yan, Chong</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><title>Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries from −80 °C to 80 °C</title><title>Angewandte Chemie</title><description>Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast‐charging capability and low‐temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial lithium (Li)‐ion transport. Here we report a wide‐temperature‐range ester‐based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three‐electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of −80 °C to 80 °C and outstanding fast‐charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2 % capacity retention after 1200 cycles (2 C) and 10‐min charge to 89 % (5 C) at 25 °C and provide reliable power even at −80 °C. All‐climate batteries from −80 °C to 80 °C: A wide‐temperature electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability is proposed. The proposed electrolyte significantly alleviates the Li plating and interfacial degradation of LiFePO4 (LFP)/graphite cells at ultralow temperatures. The LFP/graphite cells exhibit an ultra‐wide operating‐temperature range of −80 °C to 80 °C and outstanding fast‐charging capability.</description><subject>Batteries</subject><subject>Charging</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy storage</subject><subject>extreme operating condition</subject><subject>Graphite</subject><subject>interfacial kinetics</subject><subject>Ion currents</subject><subject>Ion transport</subject><subject>Iron phosphates</subject><subject>Li0 plating</subject><subject>Life span</subject><subject>LiFePO4/graphite batteries</subject><subject>Lithium</subject><subject>Relaxation time</subject><subject>Storage batteries</subject><subject>wide-temperature electrolyte</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNo9kM9Kw0AQhxdRsFavngOeY2f_JLt7rDWtQrEivS-bZtKmpEncpEhvHvXqk_gMPkqfxIRqYeA3H3zMwI-Qawq3FIANbLHEWwZMgG7nhPRowKjPZSBPSQ9ACF8xoc_JRV2vASBkUveIiXJcNK7Mdw1691hny8KLChvnWHsvuFhZt8SOvGk2xueZGEycrVZZK9_ZpkGXtV7qyo23__hSsH___PkeeU3p_e-X5Cy1eY1Xf9kn83E0Hz3409nkcTSc-pVU2tc0SSnniqcBJEwjgLKUJ4mNBaYqkKlmqY4VlTZUkiVhoGiMUgSLDtMQeZ_cHM5WrnzdYt2Ydbl1RfvRcBoIYCEH1lr6YL1lOe5M5bKNdTtDwXQFmq5AcyzQDJ8m0ZH4LwLwaQI</recordid><startdate>20250110</startdate><enddate>20250110</enddate><creator>Li, Zeheng</creator><creator>Yao, Yu‐Xing</creator><creator>Zheng, Mengting</creator><creator>Sun, Shuo</creator><creator>Yang, Yi</creator><creator>Xiao, Ye</creator><creator>Xu, Lei</creator><creator>Jin, Cheng‐Bin</creator><creator>Yue, Xin‐Yang</creator><creator>Song, Tinglu</creator><creator>Wu, Peng</creator><creator>Yan, Chong</creator><creator>Zhang, Qiang</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3929-1541</orcidid></search><sort><creationdate>20250110</creationdate><title>Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries from −80 °C to 80 °C</title><author>Li, Zeheng ; Yao, Yu‐Xing ; Zheng, Mengting ; Sun, Shuo ; Yang, Yi ; Xiao, Ye ; Xu, Lei ; Jin, Cheng‐Bin ; Yue, Xin‐Yang ; Song, Tinglu ; Wu, Peng ; Yan, Chong ; Zhang, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p789-91df13383f50d29e008a13ddab4ef857f92f9b817a6872d6581be745c6872f6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Batteries</topic><topic>Charging</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy storage</topic><topic>extreme operating condition</topic><topic>Graphite</topic><topic>interfacial kinetics</topic><topic>Ion currents</topic><topic>Ion transport</topic><topic>Iron phosphates</topic><topic>Li0 plating</topic><topic>Life span</topic><topic>LiFePO4/graphite batteries</topic><topic>Lithium</topic><topic>Relaxation time</topic><topic>Storage batteries</topic><topic>wide-temperature electrolyte</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zeheng</creatorcontrib><creatorcontrib>Yao, Yu‐Xing</creatorcontrib><creatorcontrib>Zheng, Mengting</creatorcontrib><creatorcontrib>Sun, Shuo</creatorcontrib><creatorcontrib>Yang, Yi</creatorcontrib><creatorcontrib>Xiao, Ye</creatorcontrib><creatorcontrib>Xu, Lei</creatorcontrib><creatorcontrib>Jin, Cheng‐Bin</creatorcontrib><creatorcontrib>Yue, Xin‐Yang</creatorcontrib><creatorcontrib>Song, Tinglu</creatorcontrib><creatorcontrib>Wu, Peng</creatorcontrib><creatorcontrib>Yan, Chong</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zeheng</au><au>Yao, Yu‐Xing</au><au>Zheng, Mengting</au><au>Sun, Shuo</au><au>Yang, Yi</au><au>Xiao, Ye</au><au>Xu, Lei</au><au>Jin, Cheng‐Bin</au><au>Yue, Xin‐Yang</au><au>Song, Tinglu</au><au>Wu, Peng</au><au>Yan, Chong</au><au>Zhang, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries from −80 °C to 80 °C</atitle><jtitle>Angewandte Chemie</jtitle><date>2025-01-10</date><risdate>2025</risdate><volume>137</volume><issue>2</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Lithium iron phosphate (LFP)/graphite batteries have long dominated the energy storage battery market and are anticipated to become the dominant technology in the global power battery market. However, the poor fast‐charging capability and low‐temperature performance of LFP/graphite batteries seriously hinder their further spread. These limitations are strongly associated with the interfacial lithium (Li)‐ion transport. Here we report a wide‐temperature‐range ester‐based electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability by regulating the anion chemistry of Li salt. The interfacial barrier of the battery is quantitatively unraveled by employing three‐electrode system and distribution of relaxation time technique. The superior role of the proposed electrolyte in preventing Li0 plating and sustaining homogeneous and stable interphases are also systematically investigated. The LFP/graphite cells exhibit rechargeability in an ultrawide temperature range of −80 °C to 80 °C and outstanding fast‐charging capability without compromising lifespan. Specially, the practical LFP/graphite pouch cells achieve 80.2 % capacity retention after 1200 cycles (2 C) and 10‐min charge to 89 % (5 C) at 25 °C and provide reliable power even at −80 °C. All‐climate batteries from −80 °C to 80 °C: A wide‐temperature electrolyte that exhibits high ionic conductivity, fast interfacial kinetics and excellent film‐forming ability is proposed. The proposed electrolyte significantly alleviates the Li plating and interfacial degradation of LiFePO4 (LFP)/graphite cells at ultralow temperatures. The LFP/graphite cells exhibit an ultra‐wide operating‐temperature range of −80 °C to 80 °C and outstanding fast‐charging capability.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202409409</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3929-1541</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2025-01, Vol.137 (2), p.n/a
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_journals_3154026302
source Wiley Online Library Journals Frontfile Complete
subjects Batteries
Charging
Electrolytes
Electrolytic cells
Energy storage
extreme operating condition
Graphite
interfacial kinetics
Ion currents
Ion transport
Iron phosphates
Li0 plating
Life span
LiFePO4/graphite batteries
Lithium
Relaxation time
Storage batteries
wide-temperature electrolyte
title Electrolyte Design Enables Rechargeable LiFePO4/Graphite Batteries from −80 °C to 80 °C
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A19%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrolyte%20Design%20Enables%20Rechargeable%20LiFePO4/Graphite%20Batteries%20from%20%E2%88%9280%E2%80%89%C2%B0C%20to%2080%E2%80%89%C2%B0C&rft.jtitle=Angewandte%20Chemie&rft.au=Li,%20Zeheng&rft.date=2025-01-10&rft.volume=137&rft.issue=2&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202409409&rft_dat=%3Cproquest_wiley%3E3154026302%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3154026302&rft_id=info:pmid/&rfr_iscdi=true