Representations of Finite Groups by Posets of Small Height

We characterize the finite groups as the automorphism groups of the finite height one posets with at most four orbits. We also prove that for each n ≥ 8 , the cyclic group Z n is isomorphic to the automorphism group of a finite height one poset with at most two orbits. As a consequence, for each n ,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Order (Dordrecht) 2024-12, Vol.41 (3), p.593-611
Hauptverfasser: Gyenizse, Gergő, Hajnal, Péter, Zádori, László
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 611
container_issue 3
container_start_page 593
container_title Order (Dordrecht)
container_volume 41
creator Gyenizse, Gergő
Hajnal, Péter
Zádori, László
description We characterize the finite groups as the automorphism groups of the finite height one posets with at most four orbits. We also prove that for each n ≥ 8 , the cyclic group Z n is isomorphic to the automorphism group of a finite height one poset with at most two orbits. As a consequence, for each n , we determine the minimum size of the posets whose automorphism groups are isomorphic to Z n .
doi_str_mv 10.1007/s11083-023-09649-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3153699000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153699000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8cb29bcba2a55a74c6df081ad7cf6414bcac57d6def04ed66c29ee81ef0d285b3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-gk2SQbb1JsKxQU_5xDNjtbt7SbNdke-u3duoI3D8MwzHtvmB8h1wxuGYC-S4xBISjwoYzKDRUnZMKk5tRwLU7JBJjStACTn5OLlDYAIIxUE3L_il3EhG3v-ia0KQt1Nm_apsdsEcO-S1l5yF5Cwv5n9bZz2222xGb92V-Ss9ptE1799in5mD--z5Z09bx4mj2sqOcaelr4kpvSl447KZ3OvapqKJirtK9VzvLSOy91pSqsIcdKKc8NYsGGseKFLMWU3Iy5XQxfe0y93YR9bIeTVjAplDHHb6aEjyofQ0oRa9vFZufiwTKwR0Z2ZGQHRvaHkRWDSYymNIjbNca_6H9c34cYad0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153699000</pqid></control><display><type>article</type><title>Representations of Finite Groups by Posets of Small Height</title><source>Springer Nature - Complete Springer Journals</source><creator>Gyenizse, Gergő ; Hajnal, Péter ; Zádori, László</creator><creatorcontrib>Gyenizse, Gergő ; Hajnal, Péter ; Zádori, László</creatorcontrib><description>We characterize the finite groups as the automorphism groups of the finite height one posets with at most four orbits. We also prove that for each n ≥ 8 , the cyclic group Z n is isomorphic to the automorphism group of a finite height one poset with at most two orbits. As a consequence, for each n , we determine the minimum size of the posets whose automorphism groups are isomorphic to Z n .</description><identifier>ISSN: 0167-8094</identifier><identifier>EISSN: 1572-9273</identifier><identifier>DOI: 10.1007/s11083-023-09649-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebra ; Automorphisms ; Discrete Mathematics ; Group theory ; Lattices ; Mathematics ; Mathematics and Statistics ; Orbits ; Order ; Ordered Algebraic Structures</subject><ispartof>Order (Dordrecht), 2024-12, Vol.41 (3), p.593-611</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8cb29bcba2a55a74c6df081ad7cf6414bcac57d6def04ed66c29ee81ef0d285b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11083-023-09649-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11083-023-09649-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gyenizse, Gergő</creatorcontrib><creatorcontrib>Hajnal, Péter</creatorcontrib><creatorcontrib>Zádori, László</creatorcontrib><title>Representations of Finite Groups by Posets of Small Height</title><title>Order (Dordrecht)</title><addtitle>Order</addtitle><description>We characterize the finite groups as the automorphism groups of the finite height one posets with at most four orbits. We also prove that for each n ≥ 8 , the cyclic group Z n is isomorphic to the automorphism group of a finite height one poset with at most two orbits. As a consequence, for each n , we determine the minimum size of the posets whose automorphism groups are isomorphic to Z n .</description><subject>Algebra</subject><subject>Automorphisms</subject><subject>Discrete Mathematics</subject><subject>Group theory</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Orbits</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><issn>0167-8094</issn><issn>1572-9273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-gk2SQbb1JsKxQU_5xDNjtbt7SbNdke-u3duoI3D8MwzHtvmB8h1wxuGYC-S4xBISjwoYzKDRUnZMKk5tRwLU7JBJjStACTn5OLlDYAIIxUE3L_il3EhG3v-ia0KQt1Nm_apsdsEcO-S1l5yF5Cwv5n9bZz2222xGb92V-Ss9ptE1799in5mD--z5Z09bx4mj2sqOcaelr4kpvSl447KZ3OvapqKJirtK9VzvLSOy91pSqsIcdKKc8NYsGGseKFLMWU3Iy5XQxfe0y93YR9bIeTVjAplDHHb6aEjyofQ0oRa9vFZufiwTKwR0Z2ZGQHRvaHkRWDSYymNIjbNca_6H9c34cYad0</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Gyenizse, Gergő</creator><creator>Hajnal, Péter</creator><creator>Zádori, László</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>Representations of Finite Groups by Posets of Small Height</title><author>Gyenizse, Gergő ; Hajnal, Péter ; Zádori, László</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8cb29bcba2a55a74c6df081ad7cf6414bcac57d6def04ed66c29ee81ef0d285b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Automorphisms</topic><topic>Discrete Mathematics</topic><topic>Group theory</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Orbits</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gyenizse, Gergő</creatorcontrib><creatorcontrib>Hajnal, Péter</creatorcontrib><creatorcontrib>Zádori, László</creatorcontrib><collection>CrossRef</collection><jtitle>Order (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gyenizse, Gergő</au><au>Hajnal, Péter</au><au>Zádori, László</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representations of Finite Groups by Posets of Small Height</atitle><jtitle>Order (Dordrecht)</jtitle><stitle>Order</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>41</volume><issue>3</issue><spage>593</spage><epage>611</epage><pages>593-611</pages><issn>0167-8094</issn><eissn>1572-9273</eissn><abstract>We characterize the finite groups as the automorphism groups of the finite height one posets with at most four orbits. We also prove that for each n ≥ 8 , the cyclic group Z n is isomorphic to the automorphism group of a finite height one poset with at most two orbits. As a consequence, for each n , we determine the minimum size of the posets whose automorphism groups are isomorphic to Z n .</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11083-023-09649-3</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-8094
ispartof Order (Dordrecht), 2024-12, Vol.41 (3), p.593-611
issn 0167-8094
1572-9273
language eng
recordid cdi_proquest_journals_3153699000
source Springer Nature - Complete Springer Journals
subjects Algebra
Automorphisms
Discrete Mathematics
Group theory
Lattices
Mathematics
Mathematics and Statistics
Orbits
Order
Ordered Algebraic Structures
title Representations of Finite Groups by Posets of Small Height
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A29%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representations%20of%20Finite%20Groups%20by%20Posets%20of%20Small%20Height&rft.jtitle=Order%20(Dordrecht)&rft.au=Gyenizse,%20Gerg%C5%91&rft.date=2024-12-01&rft.volume=41&rft.issue=3&rft.spage=593&rft.epage=611&rft.pages=593-611&rft.issn=0167-8094&rft.eissn=1572-9273&rft_id=info:doi/10.1007/s11083-023-09649-3&rft_dat=%3Cproquest_cross%3E3153699000%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153699000&rft_id=info:pmid/&rfr_iscdi=true