Representations of Finite Groups by Posets of Small Height
We characterize the finite groups as the automorphism groups of the finite height one posets with at most four orbits. We also prove that for each n ≥ 8 , the cyclic group Z n is isomorphic to the automorphism group of a finite height one poset with at most two orbits. As a consequence, for each n ,...
Gespeichert in:
Veröffentlicht in: | Order (Dordrecht) 2024-12, Vol.41 (3), p.593-611 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 611 |
---|---|
container_issue | 3 |
container_start_page | 593 |
container_title | Order (Dordrecht) |
container_volume | 41 |
creator | Gyenizse, Gergő Hajnal, Péter Zádori, László |
description | We characterize the finite groups as the automorphism groups of the finite height one posets with at most four orbits. We also prove that for each
n
≥
8
, the cyclic group
Z
n
is isomorphic to the automorphism group of a finite height one poset with at most two orbits. As a consequence, for each
n
, we determine the minimum size of the posets whose automorphism groups are isomorphic to
Z
n
. |
doi_str_mv | 10.1007/s11083-023-09649-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3153699000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153699000</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-8cb29bcba2a55a74c6df081ad7cf6414bcac57d6def04ed66c29ee81ef0d285b3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-gk2SQbb1JsKxQU_5xDNjtbt7SbNdke-u3duoI3D8MwzHtvmB8h1wxuGYC-S4xBISjwoYzKDRUnZMKk5tRwLU7JBJjStACTn5OLlDYAIIxUE3L_il3EhG3v-ia0KQt1Nm_apsdsEcO-S1l5yF5Cwv5n9bZz2222xGb92V-Ss9ptE1799in5mD--z5Z09bx4mj2sqOcaelr4kpvSl447KZ3OvapqKJirtK9VzvLSOy91pSqsIcdKKc8NYsGGseKFLMWU3Iy5XQxfe0y93YR9bIeTVjAplDHHb6aEjyofQ0oRa9vFZufiwTKwR0Z2ZGQHRvaHkRWDSYymNIjbNca_6H9c34cYad0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153699000</pqid></control><display><type>article</type><title>Representations of Finite Groups by Posets of Small Height</title><source>Springer Nature - Complete Springer Journals</source><creator>Gyenizse, Gergő ; Hajnal, Péter ; Zádori, László</creator><creatorcontrib>Gyenizse, Gergő ; Hajnal, Péter ; Zádori, László</creatorcontrib><description>We characterize the finite groups as the automorphism groups of the finite height one posets with at most four orbits. We also prove that for each
n
≥
8
, the cyclic group
Z
n
is isomorphic to the automorphism group of a finite height one poset with at most two orbits. As a consequence, for each
n
, we determine the minimum size of the posets whose automorphism groups are isomorphic to
Z
n
.</description><identifier>ISSN: 0167-8094</identifier><identifier>EISSN: 1572-9273</identifier><identifier>DOI: 10.1007/s11083-023-09649-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebra ; Automorphisms ; Discrete Mathematics ; Group theory ; Lattices ; Mathematics ; Mathematics and Statistics ; Orbits ; Order ; Ordered Algebraic Structures</subject><ispartof>Order (Dordrecht), 2024-12, Vol.41 (3), p.593-611</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-8cb29bcba2a55a74c6df081ad7cf6414bcac57d6def04ed66c29ee81ef0d285b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11083-023-09649-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11083-023-09649-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Gyenizse, Gergő</creatorcontrib><creatorcontrib>Hajnal, Péter</creatorcontrib><creatorcontrib>Zádori, László</creatorcontrib><title>Representations of Finite Groups by Posets of Small Height</title><title>Order (Dordrecht)</title><addtitle>Order</addtitle><description>We characterize the finite groups as the automorphism groups of the finite height one posets with at most four orbits. We also prove that for each
n
≥
8
, the cyclic group
Z
n
is isomorphic to the automorphism group of a finite height one poset with at most two orbits. As a consequence, for each
n
, we determine the minimum size of the posets whose automorphism groups are isomorphic to
Z
n
.</description><subject>Algebra</subject><subject>Automorphisms</subject><subject>Discrete Mathematics</subject><subject>Group theory</subject><subject>Lattices</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Orbits</subject><subject>Order</subject><subject>Ordered Algebraic Structures</subject><issn>0167-8094</issn><issn>1572-9273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-gk2SQbb1JsKxQU_5xDNjtbt7SbNdke-u3duoI3D8MwzHtvmB8h1wxuGYC-S4xBISjwoYzKDRUnZMKk5tRwLU7JBJjStACTn5OLlDYAIIxUE3L_il3EhG3v-ia0KQt1Nm_apsdsEcO-S1l5yF5Cwv5n9bZz2222xGb92V-Ss9ptE1799in5mD--z5Z09bx4mj2sqOcaelr4kpvSl447KZ3OvapqKJirtK9VzvLSOy91pSqsIcdKKc8NYsGGseKFLMWU3Iy5XQxfe0y93YR9bIeTVjAplDHHb6aEjyofQ0oRa9vFZufiwTKwR0Z2ZGQHRvaHkRWDSYymNIjbNca_6H9c34cYad0</recordid><startdate>20241201</startdate><enddate>20241201</enddate><creator>Gyenizse, Gergő</creator><creator>Hajnal, Péter</creator><creator>Zádori, László</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241201</creationdate><title>Representations of Finite Groups by Posets of Small Height</title><author>Gyenizse, Gergő ; Hajnal, Péter ; Zádori, László</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-8cb29bcba2a55a74c6df081ad7cf6414bcac57d6def04ed66c29ee81ef0d285b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algebra</topic><topic>Automorphisms</topic><topic>Discrete Mathematics</topic><topic>Group theory</topic><topic>Lattices</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Orbits</topic><topic>Order</topic><topic>Ordered Algebraic Structures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gyenizse, Gergő</creatorcontrib><creatorcontrib>Hajnal, Péter</creatorcontrib><creatorcontrib>Zádori, László</creatorcontrib><collection>CrossRef</collection><jtitle>Order (Dordrecht)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gyenizse, Gergő</au><au>Hajnal, Péter</au><au>Zádori, László</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representations of Finite Groups by Posets of Small Height</atitle><jtitle>Order (Dordrecht)</jtitle><stitle>Order</stitle><date>2024-12-01</date><risdate>2024</risdate><volume>41</volume><issue>3</issue><spage>593</spage><epage>611</epage><pages>593-611</pages><issn>0167-8094</issn><eissn>1572-9273</eissn><abstract>We characterize the finite groups as the automorphism groups of the finite height one posets with at most four orbits. We also prove that for each
n
≥
8
, the cyclic group
Z
n
is isomorphic to the automorphism group of a finite height one poset with at most two orbits. As a consequence, for each
n
, we determine the minimum size of the posets whose automorphism groups are isomorphic to
Z
n
.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11083-023-09649-3</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8094 |
ispartof | Order (Dordrecht), 2024-12, Vol.41 (3), p.593-611 |
issn | 0167-8094 1572-9273 |
language | eng |
recordid | cdi_proquest_journals_3153699000 |
source | Springer Nature - Complete Springer Journals |
subjects | Algebra Automorphisms Discrete Mathematics Group theory Lattices Mathematics Mathematics and Statistics Orbits Order Ordered Algebraic Structures |
title | Representations of Finite Groups by Posets of Small Height |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T02%3A29%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representations%20of%20Finite%20Groups%20by%20Posets%20of%20Small%20Height&rft.jtitle=Order%20(Dordrecht)&rft.au=Gyenizse,%20Gerg%C5%91&rft.date=2024-12-01&rft.volume=41&rft.issue=3&rft.spage=593&rft.epage=611&rft.pages=593-611&rft.issn=0167-8094&rft.eissn=1572-9273&rft_id=info:doi/10.1007/s11083-023-09649-3&rft_dat=%3Cproquest_cross%3E3153699000%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153699000&rft_id=info:pmid/&rfr_iscdi=true |