Cilia-Inspired Bionic Tactile E-Skin: Structure, Fabrication and Applications
The rapid advancement of tactile electronic skin (E-skin) has highlighted the effectiveness of incorporating bionic, force-sensitive microstructures in order to enhance sensing performance. Among these, cilia-like microstructures with high aspect ratios, whose inspiration is mammalian hair and the l...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2025-01, Vol.25 (1), p.76 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 76 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 25 |
creator | Yu, Jiahe Ai, Muxi Liu, Cairong Bi, Hengchang Wu, Xing Ying, Wu Bin Yu, Zhe |
description | The rapid advancement of tactile electronic skin (E-skin) has highlighted the effectiveness of incorporating bionic, force-sensitive microstructures in order to enhance sensing performance. Among these, cilia-like microstructures with high aspect ratios, whose inspiration is mammalian hair and the lateral line system of fish, have attracted significant attention for their unique ability to enable E-skin to detect weak signals, even in extreme conditions. Herein, this review critically examines recent progress in the development of cilia-inspired bionic tactile E-skin, with a focus on columnar, conical and filiform microstructures, as well as their fabrication strategies, including template-based and template-free methods. The relationship between sensing performance and fabrication approaches is thoroughly analyzed, offering a framework for optimizing sensitivity and resilience. We also explore the applications of these systems across various fields, such as medical diagnostics, motion detection, human–machine interfaces, dexterous robotics, near-field communication, and perceptual decoupling systems. Finally, we provide insights into the pathways toward industrializing cilia-inspired bionic tactile E-skin, aiming to drive innovation and unlock the technology’s potential for future applications. |
doi_str_mv | 10.3390/s25010076 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3153690461</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3153690461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c976-96763eaf918a05099671b181464ce2e262bf6cb1fac5807b42b6d110c568de663</originalsourceid><addsrcrecordid>eNpNkEFLw0AUhBdRsFYP_oMFT4LR93Y3L4m3GlotVDy097DZbGBrTOJucvDfN9IinmYGPmZgGLtFeJQyg6cgYkCAhM7YDJVQUSoEnP_zl-wqhD2AkFKmM_aeu8bpaN2G3nlb8RfXtc7wnTaDayxfRttP1z7z7eBHM4zePvCVLr0zephArtuKL_q-OeVwzS5q3QR7c9I5262Wu_wt2ny8rvPFJjJZQlFGCUmr6wxTDTFkU8YSU1SkjBVWkChrMiXW2sQpJKUSJVWIYGJKK0sk5-zuWNv77nu0YSj23ejbabGQGEvKQBFO1P2RMr4Lwdu66L370v6nQCh-zyr-zpIHOrVZ5g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153690461</pqid></control><display><type>article</type><title>Cilia-Inspired Bionic Tactile E-Skin: Structure, Fabrication and Applications</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yu, Jiahe ; Ai, Muxi ; Liu, Cairong ; Bi, Hengchang ; Wu, Xing ; Ying, Wu Bin ; Yu, Zhe</creator><creatorcontrib>Yu, Jiahe ; Ai, Muxi ; Liu, Cairong ; Bi, Hengchang ; Wu, Xing ; Ying, Wu Bin ; Yu, Zhe</creatorcontrib><description>The rapid advancement of tactile electronic skin (E-skin) has highlighted the effectiveness of incorporating bionic, force-sensitive microstructures in order to enhance sensing performance. Among these, cilia-like microstructures with high aspect ratios, whose inspiration is mammalian hair and the lateral line system of fish, have attracted significant attention for their unique ability to enable E-skin to detect weak signals, even in extreme conditions. Herein, this review critically examines recent progress in the development of cilia-inspired bionic tactile E-skin, with a focus on columnar, conical and filiform microstructures, as well as their fabrication strategies, including template-based and template-free methods. The relationship between sensing performance and fabrication approaches is thoroughly analyzed, offering a framework for optimizing sensitivity and resilience. We also explore the applications of these systems across various fields, such as medical diagnostics, motion detection, human–machine interfaces, dexterous robotics, near-field communication, and perceptual decoupling systems. Finally, we provide insights into the pathways toward industrializing cilia-inspired bionic tactile E-skin, aiming to drive innovation and unlock the technology’s potential for future applications.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s25010076</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Business metrics ; Design ; Microstructure ; Sensors ; Skin ; Thin films</subject><ispartof>Sensors (Basel, Switzerland), 2025-01, Vol.25 (1), p.76</ispartof><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c976-96763eaf918a05099671b181464ce2e262bf6cb1fac5807b42b6d110c568de663</cites><orcidid>0000-0002-9207-6744 ; 0009-0002-8628-7243 ; 0000-0002-8768-7428</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27911,27912</link.rule.ids></links><search><creatorcontrib>Yu, Jiahe</creatorcontrib><creatorcontrib>Ai, Muxi</creatorcontrib><creatorcontrib>Liu, Cairong</creatorcontrib><creatorcontrib>Bi, Hengchang</creatorcontrib><creatorcontrib>Wu, Xing</creatorcontrib><creatorcontrib>Ying, Wu Bin</creatorcontrib><creatorcontrib>Yu, Zhe</creatorcontrib><title>Cilia-Inspired Bionic Tactile E-Skin: Structure, Fabrication and Applications</title><title>Sensors (Basel, Switzerland)</title><description>The rapid advancement of tactile electronic skin (E-skin) has highlighted the effectiveness of incorporating bionic, force-sensitive microstructures in order to enhance sensing performance. Among these, cilia-like microstructures with high aspect ratios, whose inspiration is mammalian hair and the lateral line system of fish, have attracted significant attention for their unique ability to enable E-skin to detect weak signals, even in extreme conditions. Herein, this review critically examines recent progress in the development of cilia-inspired bionic tactile E-skin, with a focus on columnar, conical and filiform microstructures, as well as their fabrication strategies, including template-based and template-free methods. The relationship between sensing performance and fabrication approaches is thoroughly analyzed, offering a framework for optimizing sensitivity and resilience. We also explore the applications of these systems across various fields, such as medical diagnostics, motion detection, human–machine interfaces, dexterous robotics, near-field communication, and perceptual decoupling systems. Finally, we provide insights into the pathways toward industrializing cilia-inspired bionic tactile E-skin, aiming to drive innovation and unlock the technology’s potential for future applications.</description><subject>Business metrics</subject><subject>Design</subject><subject>Microstructure</subject><subject>Sensors</subject><subject>Skin</subject><subject>Thin films</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNkEFLw0AUhBdRsFYP_oMFT4LR93Y3L4m3GlotVDy097DZbGBrTOJucvDfN9IinmYGPmZgGLtFeJQyg6cgYkCAhM7YDJVQUSoEnP_zl-wqhD2AkFKmM_aeu8bpaN2G3nlb8RfXtc7wnTaDayxfRttP1z7z7eBHM4zePvCVLr0zephArtuKL_q-OeVwzS5q3QR7c9I5262Wu_wt2ny8rvPFJjJZQlFGCUmr6wxTDTFkU8YSU1SkjBVWkChrMiXW2sQpJKUSJVWIYGJKK0sk5-zuWNv77nu0YSj23ejbabGQGEvKQBFO1P2RMr4Lwdu66L370v6nQCh-zyr-zpIHOrVZ5g</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Yu, Jiahe</creator><creator>Ai, Muxi</creator><creator>Liu, Cairong</creator><creator>Bi, Hengchang</creator><creator>Wu, Xing</creator><creator>Ying, Wu Bin</creator><creator>Yu, Zhe</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-9207-6744</orcidid><orcidid>https://orcid.org/0009-0002-8628-7243</orcidid><orcidid>https://orcid.org/0000-0002-8768-7428</orcidid></search><sort><creationdate>20250101</creationdate><title>Cilia-Inspired Bionic Tactile E-Skin: Structure, Fabrication and Applications</title><author>Yu, Jiahe ; Ai, Muxi ; Liu, Cairong ; Bi, Hengchang ; Wu, Xing ; Ying, Wu Bin ; Yu, Zhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c976-96763eaf918a05099671b181464ce2e262bf6cb1fac5807b42b6d110c568de663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Business metrics</topic><topic>Design</topic><topic>Microstructure</topic><topic>Sensors</topic><topic>Skin</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Jiahe</creatorcontrib><creatorcontrib>Ai, Muxi</creatorcontrib><creatorcontrib>Liu, Cairong</creatorcontrib><creatorcontrib>Bi, Hengchang</creatorcontrib><creatorcontrib>Wu, Xing</creatorcontrib><creatorcontrib>Ying, Wu Bin</creatorcontrib><creatorcontrib>Yu, Zhe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Jiahe</au><au>Ai, Muxi</au><au>Liu, Cairong</au><au>Bi, Hengchang</au><au>Wu, Xing</au><au>Ying, Wu Bin</au><au>Yu, Zhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cilia-Inspired Bionic Tactile E-Skin: Structure, Fabrication and Applications</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>25</volume><issue>1</issue><spage>76</spage><pages>76-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>The rapid advancement of tactile electronic skin (E-skin) has highlighted the effectiveness of incorporating bionic, force-sensitive microstructures in order to enhance sensing performance. Among these, cilia-like microstructures with high aspect ratios, whose inspiration is mammalian hair and the lateral line system of fish, have attracted significant attention for their unique ability to enable E-skin to detect weak signals, even in extreme conditions. Herein, this review critically examines recent progress in the development of cilia-inspired bionic tactile E-skin, with a focus on columnar, conical and filiform microstructures, as well as their fabrication strategies, including template-based and template-free methods. The relationship between sensing performance and fabrication approaches is thoroughly analyzed, offering a framework for optimizing sensitivity and resilience. We also explore the applications of these systems across various fields, such as medical diagnostics, motion detection, human–machine interfaces, dexterous robotics, near-field communication, and perceptual decoupling systems. Finally, we provide insights into the pathways toward industrializing cilia-inspired bionic tactile E-skin, aiming to drive innovation and unlock the technology’s potential for future applications.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/s25010076</doi><orcidid>https://orcid.org/0000-0002-9207-6744</orcidid><orcidid>https://orcid.org/0009-0002-8628-7243</orcidid><orcidid>https://orcid.org/0000-0002-8768-7428</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2025-01, Vol.25 (1), p.76 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_proquest_journals_3153690461 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Business metrics Design Microstructure Sensors Skin Thin films |
title | Cilia-Inspired Bionic Tactile E-Skin: Structure, Fabrication and Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T11%3A20%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cilia-Inspired%20Bionic%20Tactile%20E-Skin:%20Structure,%20Fabrication%20and%20Applications&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Yu,%20Jiahe&rft.date=2025-01-01&rft.volume=25&rft.issue=1&rft.spage=76&rft.pages=76-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s25010076&rft_dat=%3Cproquest_cross%3E3153690461%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3153690461&rft_id=info:pmid/&rfr_iscdi=true |