Interface Collaborative Strategy for High Mobility Organic Single‐Crystal Field‐Effect Transistors with Ideal Current–Voltage Curves

The key roles of electrode/semiconductor and semiconductor/dielectric interfaces play in the ideality of organic field‐effect transistors (OFETs) by traditional device preparation technologies are not yet fully understood, which severely limits progress in the design of molecules, the understanding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2025-01, Vol.35 (2), p.n/a
Hauptverfasser: Ren, Jianzhou, Rong, Bokun, Zheng, Lei, Hu, Yongxu, Wang, Yuchan, Wang, Zhongwu, Chen, Xiaosong, Zhang, Kailiang, Li, Liqiang, Hu, Wenping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title Advanced functional materials
container_volume 35
creator Ren, Jianzhou
Rong, Bokun
Zheng, Lei
Hu, Yongxu
Wang, Yuchan
Wang, Zhongwu
Chen, Xiaosong
Zhang, Kailiang
Li, Liqiang
Hu, Wenping
description The key roles of electrode/semiconductor and semiconductor/dielectric interfaces play in the ideality of organic field‐effect transistors (OFETs) by traditional device preparation technologies are not yet fully understood, which severely limits progress in the design of molecules, the understanding of transport mechanisms, and the circuit applications of OFETs. Herein, at a quantitative level, the origin of nonideal current–voltage (I–V) curves and possibly overestimated mobility in single‐crystal OFETs is revealed, including contact resistance (Rc), charge trapping, and scattering at interfaces of devices. Impressively, an efficient interface collaborative strategy, which consists of transferred “doped” electrodes with tunable contact “doping” localized regions at the source‐drain contacts and polymer‐modified SiO2 with suitable surface polarity (γsp) is further demonstrated that have great advantages in the construction of ideal high mobility devices. Also, an interesting double‐edged sword effect of γsp of dielectric on the ideality of OFETs is observed. The dielectric with a lower γsp can result in higher mobility, while too low γsp would degrade the device ideality due to significant effect of charge scattering. The findings not only provide new perspectives and strategies to construct ideal OFETs but also offer useful guidance to correctly evaluate organic semiconductor materials. A high‐efficiency “interface collaborative strategy”, comprising of transferring “doped” electrodes and utilizing polymer modified layer on SiO2 with suitable surface polarity (γsp) is demonstrated that have great advantages in constructing ideal single‐crystal OFETs attributed to tunable injection contact without direct chemical bonding and weakened charge scattering effect, providing some useful guidance to correctly evaluate organic semiconductor materials.
doi_str_mv 10.1002/adfm.202412472
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3152857916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3152857916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2722-cf32ee1f3afce347fab1ea0e953187445954210816f743ca4ba5b33f0120d0233</originalsourceid><addsrcrecordid>eNqFkE9PwkAQxRujiYhePW_iGdx_pXAkVYQEwgE03pptO1uWLF3cXSC9cfZk4jfkk1iCwaOneTP5vXnJC4J7gtsEY_oocrlqU0w5oTyiF0GDdEinxTDtXp41eb8ObpxbYkyiiPFG8DkqPVgpMkCx0VqkxgqvtoBmvhZQVEgai4aqWKCJSZVWvkJTW4hSZWimykLDYf8V28p5odFAgc7r_VlKyDyaW1E65byxDu2UX6BRDjUVb6yF0h_2329Ge1HA8bIFdxtcSaEd3P3OZvA6eJ7Hw9Z4-jKK--NWRiNKW5lkFIBIJmQGjEdSpAQEhl7ISDfiPOyFnBLcJR0ZcZYJnoowZUxiQnGOKWPN4OH0d23NxwacT5ZmY8s6MmEkpN0w6pFOTbVPVGaNcxZksrZqJWyVEJwc-06OfSfnvmtD72TYKQ3VP3TSfxpM_rw_LsOJIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152857916</pqid></control><display><type>article</type><title>Interface Collaborative Strategy for High Mobility Organic Single‐Crystal Field‐Effect Transistors with Ideal Current–Voltage Curves</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ren, Jianzhou ; Rong, Bokun ; Zheng, Lei ; Hu, Yongxu ; Wang, Yuchan ; Wang, Zhongwu ; Chen, Xiaosong ; Zhang, Kailiang ; Li, Liqiang ; Hu, Wenping</creator><creatorcontrib>Ren, Jianzhou ; Rong, Bokun ; Zheng, Lei ; Hu, Yongxu ; Wang, Yuchan ; Wang, Zhongwu ; Chen, Xiaosong ; Zhang, Kailiang ; Li, Liqiang ; Hu, Wenping</creatorcontrib><description>The key roles of electrode/semiconductor and semiconductor/dielectric interfaces play in the ideality of organic field‐effect transistors (OFETs) by traditional device preparation technologies are not yet fully understood, which severely limits progress in the design of molecules, the understanding of transport mechanisms, and the circuit applications of OFETs. Herein, at a quantitative level, the origin of nonideal current–voltage (I–V) curves and possibly overestimated mobility in single‐crystal OFETs is revealed, including contact resistance (Rc), charge trapping, and scattering at interfaces of devices. Impressively, an efficient interface collaborative strategy, which consists of transferred “doped” electrodes with tunable contact “doping” localized regions at the source‐drain contacts and polymer‐modified SiO2 with suitable surface polarity (γsp) is further demonstrated that have great advantages in the construction of ideal high mobility devices. Also, an interesting double‐edged sword effect of γsp of dielectric on the ideality of OFETs is observed. The dielectric with a lower γsp can result in higher mobility, while too low γsp would degrade the device ideality due to significant effect of charge scattering. The findings not only provide new perspectives and strategies to construct ideal OFETs but also offer useful guidance to correctly evaluate organic semiconductor materials. A high‐efficiency “interface collaborative strategy”, comprising of transferring “doped” electrodes and utilizing polymer modified layer on SiO2 with suitable surface polarity (γsp) is demonstrated that have great advantages in constructing ideal single‐crystal OFETs attributed to tunable injection contact without direct chemical bonding and weakened charge scattering effect, providing some useful guidance to correctly evaluate organic semiconductor materials.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202412472</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Collaboration ; Contact resistance ; Electric potential ; Electrodes ; Field effect transistors ; interface polar component ; nonideal current–voltage curve ; organic crystal ; organic field‐effect transistor ; Scattering ; Semiconductor materials ; Silicon dioxide ; transferred "doped" electrodes ; Transistors ; Voltage</subject><ispartof>Advanced functional materials, 2025-01, Vol.35 (2), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2025 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2722-cf32ee1f3afce347fab1ea0e953187445954210816f743ca4ba5b33f0120d0233</cites><orcidid>0000-0002-5601-3527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202412472$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202412472$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ren, Jianzhou</creatorcontrib><creatorcontrib>Rong, Bokun</creatorcontrib><creatorcontrib>Zheng, Lei</creatorcontrib><creatorcontrib>Hu, Yongxu</creatorcontrib><creatorcontrib>Wang, Yuchan</creatorcontrib><creatorcontrib>Wang, Zhongwu</creatorcontrib><creatorcontrib>Chen, Xiaosong</creatorcontrib><creatorcontrib>Zhang, Kailiang</creatorcontrib><creatorcontrib>Li, Liqiang</creatorcontrib><creatorcontrib>Hu, Wenping</creatorcontrib><title>Interface Collaborative Strategy for High Mobility Organic Single‐Crystal Field‐Effect Transistors with Ideal Current–Voltage Curves</title><title>Advanced functional materials</title><description>The key roles of electrode/semiconductor and semiconductor/dielectric interfaces play in the ideality of organic field‐effect transistors (OFETs) by traditional device preparation technologies are not yet fully understood, which severely limits progress in the design of molecules, the understanding of transport mechanisms, and the circuit applications of OFETs. Herein, at a quantitative level, the origin of nonideal current–voltage (I–V) curves and possibly overestimated mobility in single‐crystal OFETs is revealed, including contact resistance (Rc), charge trapping, and scattering at interfaces of devices. Impressively, an efficient interface collaborative strategy, which consists of transferred “doped” electrodes with tunable contact “doping” localized regions at the source‐drain contacts and polymer‐modified SiO2 with suitable surface polarity (γsp) is further demonstrated that have great advantages in the construction of ideal high mobility devices. Also, an interesting double‐edged sword effect of γsp of dielectric on the ideality of OFETs is observed. The dielectric with a lower γsp can result in higher mobility, while too low γsp would degrade the device ideality due to significant effect of charge scattering. The findings not only provide new perspectives and strategies to construct ideal OFETs but also offer useful guidance to correctly evaluate organic semiconductor materials. A high‐efficiency “interface collaborative strategy”, comprising of transferring “doped” electrodes and utilizing polymer modified layer on SiO2 with suitable surface polarity (γsp) is demonstrated that have great advantages in constructing ideal single‐crystal OFETs attributed to tunable injection contact without direct chemical bonding and weakened charge scattering effect, providing some useful guidance to correctly evaluate organic semiconductor materials.</description><subject>Collaboration</subject><subject>Contact resistance</subject><subject>Electric potential</subject><subject>Electrodes</subject><subject>Field effect transistors</subject><subject>interface polar component</subject><subject>nonideal current–voltage curve</subject><subject>organic crystal</subject><subject>organic field‐effect transistor</subject><subject>Scattering</subject><subject>Semiconductor materials</subject><subject>Silicon dioxide</subject><subject>transferred "doped" electrodes</subject><subject>Transistors</subject><subject>Voltage</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PwkAQxRujiYhePW_iGdx_pXAkVYQEwgE03pptO1uWLF3cXSC9cfZk4jfkk1iCwaOneTP5vXnJC4J7gtsEY_oocrlqU0w5oTyiF0GDdEinxTDtXp41eb8ObpxbYkyiiPFG8DkqPVgpMkCx0VqkxgqvtoBmvhZQVEgai4aqWKCJSZVWvkJTW4hSZWimykLDYf8V28p5odFAgc7r_VlKyDyaW1E65byxDu2UX6BRDjUVb6yF0h_2329Ge1HA8bIFdxtcSaEd3P3OZvA6eJ7Hw9Z4-jKK--NWRiNKW5lkFIBIJmQGjEdSpAQEhl7ISDfiPOyFnBLcJR0ZcZYJnoowZUxiQnGOKWPN4OH0d23NxwacT5ZmY8s6MmEkpN0w6pFOTbVPVGaNcxZksrZqJWyVEJwc-06OfSfnvmtD72TYKQ3VP3TSfxpM_rw_LsOJIQ</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Ren, Jianzhou</creator><creator>Rong, Bokun</creator><creator>Zheng, Lei</creator><creator>Hu, Yongxu</creator><creator>Wang, Yuchan</creator><creator>Wang, Zhongwu</creator><creator>Chen, Xiaosong</creator><creator>Zhang, Kailiang</creator><creator>Li, Liqiang</creator><creator>Hu, Wenping</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5601-3527</orcidid></search><sort><creationdate>20250101</creationdate><title>Interface Collaborative Strategy for High Mobility Organic Single‐Crystal Field‐Effect Transistors with Ideal Current–Voltage Curves</title><author>Ren, Jianzhou ; Rong, Bokun ; Zheng, Lei ; Hu, Yongxu ; Wang, Yuchan ; Wang, Zhongwu ; Chen, Xiaosong ; Zhang, Kailiang ; Li, Liqiang ; Hu, Wenping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2722-cf32ee1f3afce347fab1ea0e953187445954210816f743ca4ba5b33f0120d0233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Collaboration</topic><topic>Contact resistance</topic><topic>Electric potential</topic><topic>Electrodes</topic><topic>Field effect transistors</topic><topic>interface polar component</topic><topic>nonideal current–voltage curve</topic><topic>organic crystal</topic><topic>organic field‐effect transistor</topic><topic>Scattering</topic><topic>Semiconductor materials</topic><topic>Silicon dioxide</topic><topic>transferred "doped" electrodes</topic><topic>Transistors</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Jianzhou</creatorcontrib><creatorcontrib>Rong, Bokun</creatorcontrib><creatorcontrib>Zheng, Lei</creatorcontrib><creatorcontrib>Hu, Yongxu</creatorcontrib><creatorcontrib>Wang, Yuchan</creatorcontrib><creatorcontrib>Wang, Zhongwu</creatorcontrib><creatorcontrib>Chen, Xiaosong</creatorcontrib><creatorcontrib>Zhang, Kailiang</creatorcontrib><creatorcontrib>Li, Liqiang</creatorcontrib><creatorcontrib>Hu, Wenping</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Jianzhou</au><au>Rong, Bokun</au><au>Zheng, Lei</au><au>Hu, Yongxu</au><au>Wang, Yuchan</au><au>Wang, Zhongwu</au><au>Chen, Xiaosong</au><au>Zhang, Kailiang</au><au>Li, Liqiang</au><au>Hu, Wenping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interface Collaborative Strategy for High Mobility Organic Single‐Crystal Field‐Effect Transistors with Ideal Current–Voltage Curves</atitle><jtitle>Advanced functional materials</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>35</volume><issue>2</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>The key roles of electrode/semiconductor and semiconductor/dielectric interfaces play in the ideality of organic field‐effect transistors (OFETs) by traditional device preparation technologies are not yet fully understood, which severely limits progress in the design of molecules, the understanding of transport mechanisms, and the circuit applications of OFETs. Herein, at a quantitative level, the origin of nonideal current–voltage (I–V) curves and possibly overestimated mobility in single‐crystal OFETs is revealed, including contact resistance (Rc), charge trapping, and scattering at interfaces of devices. Impressively, an efficient interface collaborative strategy, which consists of transferred “doped” electrodes with tunable contact “doping” localized regions at the source‐drain contacts and polymer‐modified SiO2 with suitable surface polarity (γsp) is further demonstrated that have great advantages in the construction of ideal high mobility devices. Also, an interesting double‐edged sword effect of γsp of dielectric on the ideality of OFETs is observed. The dielectric with a lower γsp can result in higher mobility, while too low γsp would degrade the device ideality due to significant effect of charge scattering. The findings not only provide new perspectives and strategies to construct ideal OFETs but also offer useful guidance to correctly evaluate organic semiconductor materials. A high‐efficiency “interface collaborative strategy”, comprising of transferring “doped” electrodes and utilizing polymer modified layer on SiO2 with suitable surface polarity (γsp) is demonstrated that have great advantages in constructing ideal single‐crystal OFETs attributed to tunable injection contact without direct chemical bonding and weakened charge scattering effect, providing some useful guidance to correctly evaluate organic semiconductor materials.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202412472</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5601-3527</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2025-01, Vol.35 (2), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_3152857916
source Wiley Online Library Journals Frontfile Complete
subjects Collaboration
Contact resistance
Electric potential
Electrodes
Field effect transistors
interface polar component
nonideal current–voltage curve
organic crystal
organic field‐effect transistor
Scattering
Semiconductor materials
Silicon dioxide
transferred "doped" electrodes
Transistors
Voltage
title Interface Collaborative Strategy for High Mobility Organic Single‐Crystal Field‐Effect Transistors with Ideal Current–Voltage Curves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T06%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interface%20Collaborative%20Strategy%20for%20High%20Mobility%20Organic%20Single%E2%80%90Crystal%20Field%E2%80%90Effect%20Transistors%20with%20Ideal%20Current%E2%80%93Voltage%20Curves&rft.jtitle=Advanced%20functional%20materials&rft.au=Ren,%20Jianzhou&rft.date=2025-01-01&rft.volume=35&rft.issue=2&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202412472&rft_dat=%3Cproquest_cross%3E3152857916%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152857916&rft_id=info:pmid/&rfr_iscdi=true