Performance Testing of 400 kW-Rated REBCO Superconducting Synchronous Machine in Low-Temperature and Low-Pressure Environments

Aircraft equipment needs to maintain stable operation in low-temperature and low-pressure environments. This study assesses the feasibility of operating a developed machine under such conditions. Rotational tests were conducted in an environment that simulated the conditions required for aircraft-mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on applied superconductivity 2025-08, Vol.35 (5), p.1-5
Hauptverfasser: Miyazaki, H., Iwakuma, M., Emori, Y., Konishi, R., Yoshida, K., Sato, S., Sasa, H., Miura, S., Sagara, I., Suzuki, Y., Konno, M., Hirai, H., Kawagoe, A., Izumi, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 5
container_start_page 1
container_title IEEE transactions on applied superconductivity
container_volume 35
creator Miyazaki, H.
Iwakuma, M.
Emori, Y.
Konishi, R.
Yoshida, K.
Sato, S.
Sasa, H.
Miura, S.
Sagara, I.
Suzuki, Y.
Konno, M.
Hirai, H.
Kawagoe, A.
Izumi, T.
description Aircraft equipment needs to maintain stable operation in low-temperature and low-pressure environments. This study assesses the feasibility of operating a developed machine under such conditions. Rotational tests were conducted in an environment that simulated the conditions required for aircraft-mounted equipment. The synchronous machine was installed in a thermostatic chamber that was set to a temperature of −55 °C and pressure of 11 kPa, which mimics the conditions at an altitude of 15,000 m. The machine demonstrated stable operation at a rotational speed of 180 rpm, with a field current of 50 A and an armature current amplitude of 100 A at a frequency of 3 Hz. The synchronous machine was tested in generator mode at ground level under no-load and three-phase short-circuit conditions to evaluate its rated operation under a normal environment. In the no-load test, the field current and rotational speed were increased from 10 A to 110 A and 100 rpm to 2,500 rpm, respectively, and the maximum line voltage was 590 V. In the three-phase short-circuit test, the U, V, and W phases exhibited maximum short-circuit currents of 490 A with a field current of 45 A and rotational speed of 100 rpm. These results confirm that the synchronous machine operated stably at 2,500 rpm with an output of 250 kW in generator mode. The stable performance of the machine under these conditions suggests its potential for enhancing the efficiency, power density, and reliability of electric propulsion systems in aviation.
doi_str_mv 10.1109/TASC.2024.3520532
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3152762963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10807805</ieee_id><sourcerecordid>3152762963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c913-4a0545369a87fa882c2a68638f37aa9c88eceabd9dba1f3b23aba02df344d44e3</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhhujiYj-ABMPm3gu7mfZHpXgR4KBQBOPzXQ7laLs4i7VcPG32wIHTzOZPO9M5omia0YHjNH0LrtfjAaccjkQilMl-EnUY0rpmCumTtueKhZrzsV5dBHCilImtVS96HeGvnJ-DdYgyTBsa_tOXEUkpeTjLZ7DFksyHz-MpmTRbNAbZ8vG7KnFzpqld9Y1gbyCWdYWSW3JxP3EGa5bFraNRwK23M9mHkPoBmP7XbexNdptuIzOKvgMeHWs_Sh7HGej53gyfXoZ3U9ikzIRS6BKKpGkoIcVaM0Nh0QnQldiCJAardEgFGVaFsAqUXABBVBeVkLKUkoU_ej2sHbj3VfTfpmvXONtezEXTPFhwtNEtBQ7UMa7EDxW-cbXa_C7nNG8s5x3lvPOcn603GZuDpkaEf_xmg51C_wBLHh6Bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152762963</pqid></control><display><type>article</type><title>Performance Testing of 400 kW-Rated REBCO Superconducting Synchronous Machine in Low-Temperature and Low-Pressure Environments</title><source>IEEE Electronic Library (IEL)</source><creator>Miyazaki, H. ; Iwakuma, M. ; Emori, Y. ; Konishi, R. ; Yoshida, K. ; Sato, S. ; Sasa, H. ; Miura, S. ; Sagara, I. ; Suzuki, Y. ; Konno, M. ; Hirai, H. ; Kawagoe, A. ; Izumi, T.</creator><creatorcontrib>Miyazaki, H. ; Iwakuma, M. ; Emori, Y. ; Konishi, R. ; Yoshida, K. ; Sato, S. ; Sasa, H. ; Miura, S. ; Sagara, I. ; Suzuki, Y. ; Konno, M. ; Hirai, H. ; Kawagoe, A. ; Izumi, T.</creatorcontrib><description>Aircraft equipment needs to maintain stable operation in low-temperature and low-pressure environments. This study assesses the feasibility of operating a developed machine under such conditions. Rotational tests were conducted in an environment that simulated the conditions required for aircraft-mounted equipment. The synchronous machine was installed in a thermostatic chamber that was set to a temperature of −55 °C and pressure of 11 kPa, which mimics the conditions at an altitude of 15,000 m. The machine demonstrated stable operation at a rotational speed of 180 rpm, with a field current of 50 A and an armature current amplitude of 100 A at a frequency of 3 Hz. The synchronous machine was tested in generator mode at ground level under no-load and three-phase short-circuit conditions to evaluate its rated operation under a normal environment. In the no-load test, the field current and rotational speed were increased from 10 A to 110 A and 100 rpm to 2,500 rpm, respectively, and the maximum line voltage was 590 V. In the three-phase short-circuit test, the U, V, and W phases exhibited maximum short-circuit currents of 490 A with a field current of 45 A and rotational speed of 100 rpm. These results confirm that the synchronous machine operated stably at 2,500 rpm with an output of 250 kW in generator mode. The stable performance of the machine under these conditions suggests its potential for enhancing the efficiency, power density, and reliability of electric propulsion systems in aviation.</description><identifier>ISSN: 1051-8223</identifier><identifier>EISSN: 1558-2515</identifier><identifier>DOI: 10.1109/TASC.2024.3520532</identifier><identifier>CODEN: ITASE9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aircraft ; Aircraft components ; Aircraft equipment ; Coils ; Current measurement ; Electric aircraft ; Electric propulsion ; Feasibility studies ; generator ; Generators ; Helium ; Line voltage ; Load tests ; Low pressure ; Low temperature ; motor ; Propulsion system performance ; REBCO tape ; Short circuit currents ; Short circuit testing ; Superconducting coils ; superconducting synchronous machine ; Synchronous machines ; System reliability ; Temperature measurement ; Velocity control ; Voltage measurement</subject><ispartof>IEEE transactions on applied superconductivity, 2025-08, Vol.35 (5), p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c913-4a0545369a87fa882c2a68638f37aa9c88eceabd9dba1f3b23aba02df344d44e3</cites><orcidid>0009-0006-4467-8296 ; 0000-0003-3560-3613 ; 0000-0001-6624-3484 ; 0000-0002-6635-1618 ; 0000-0003-1097-2869 ; 0000-0003-2841-286X ; 0000-0002-5470-1190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10807805$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10807805$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Miyazaki, H.</creatorcontrib><creatorcontrib>Iwakuma, M.</creatorcontrib><creatorcontrib>Emori, Y.</creatorcontrib><creatorcontrib>Konishi, R.</creatorcontrib><creatorcontrib>Yoshida, K.</creatorcontrib><creatorcontrib>Sato, S.</creatorcontrib><creatorcontrib>Sasa, H.</creatorcontrib><creatorcontrib>Miura, S.</creatorcontrib><creatorcontrib>Sagara, I.</creatorcontrib><creatorcontrib>Suzuki, Y.</creatorcontrib><creatorcontrib>Konno, M.</creatorcontrib><creatorcontrib>Hirai, H.</creatorcontrib><creatorcontrib>Kawagoe, A.</creatorcontrib><creatorcontrib>Izumi, T.</creatorcontrib><title>Performance Testing of 400 kW-Rated REBCO Superconducting Synchronous Machine in Low-Temperature and Low-Pressure Environments</title><title>IEEE transactions on applied superconductivity</title><addtitle>TASC</addtitle><description>Aircraft equipment needs to maintain stable operation in low-temperature and low-pressure environments. This study assesses the feasibility of operating a developed machine under such conditions. Rotational tests were conducted in an environment that simulated the conditions required for aircraft-mounted equipment. The synchronous machine was installed in a thermostatic chamber that was set to a temperature of −55 °C and pressure of 11 kPa, which mimics the conditions at an altitude of 15,000 m. The machine demonstrated stable operation at a rotational speed of 180 rpm, with a field current of 50 A and an armature current amplitude of 100 A at a frequency of 3 Hz. The synchronous machine was tested in generator mode at ground level under no-load and three-phase short-circuit conditions to evaluate its rated operation under a normal environment. In the no-load test, the field current and rotational speed were increased from 10 A to 110 A and 100 rpm to 2,500 rpm, respectively, and the maximum line voltage was 590 V. In the three-phase short-circuit test, the U, V, and W phases exhibited maximum short-circuit currents of 490 A with a field current of 45 A and rotational speed of 100 rpm. These results confirm that the synchronous machine operated stably at 2,500 rpm with an output of 250 kW in generator mode. The stable performance of the machine under these conditions suggests its potential for enhancing the efficiency, power density, and reliability of electric propulsion systems in aviation.</description><subject>Aircraft</subject><subject>Aircraft components</subject><subject>Aircraft equipment</subject><subject>Coils</subject><subject>Current measurement</subject><subject>Electric aircraft</subject><subject>Electric propulsion</subject><subject>Feasibility studies</subject><subject>generator</subject><subject>Generators</subject><subject>Helium</subject><subject>Line voltage</subject><subject>Load tests</subject><subject>Low pressure</subject><subject>Low temperature</subject><subject>motor</subject><subject>Propulsion system performance</subject><subject>REBCO tape</subject><subject>Short circuit currents</subject><subject>Short circuit testing</subject><subject>Superconducting coils</subject><subject>superconducting synchronous machine</subject><subject>Synchronous machines</subject><subject>System reliability</subject><subject>Temperature measurement</subject><subject>Velocity control</subject><subject>Voltage measurement</subject><issn>1051-8223</issn><issn>1558-2515</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhhujiYj-ABMPm3gu7mfZHpXgR4KBQBOPzXQ7laLs4i7VcPG32wIHTzOZPO9M5omia0YHjNH0LrtfjAaccjkQilMl-EnUY0rpmCumTtueKhZrzsV5dBHCilImtVS96HeGvnJ-DdYgyTBsa_tOXEUkpeTjLZ7DFksyHz-MpmTRbNAbZ8vG7KnFzpqld9Y1gbyCWdYWSW3JxP3EGa5bFraNRwK23M9mHkPoBmP7XbexNdptuIzOKvgMeHWs_Sh7HGej53gyfXoZ3U9ikzIRS6BKKpGkoIcVaM0Nh0QnQldiCJAardEgFGVaFsAqUXABBVBeVkLKUkoU_ej2sHbj3VfTfpmvXONtezEXTPFhwtNEtBQ7UMa7EDxW-cbXa_C7nNG8s5x3lvPOcn603GZuDpkaEf_xmg51C_wBLHh6Bg</recordid><startdate>202508</startdate><enddate>202508</enddate><creator>Miyazaki, H.</creator><creator>Iwakuma, M.</creator><creator>Emori, Y.</creator><creator>Konishi, R.</creator><creator>Yoshida, K.</creator><creator>Sato, S.</creator><creator>Sasa, H.</creator><creator>Miura, S.</creator><creator>Sagara, I.</creator><creator>Suzuki, Y.</creator><creator>Konno, M.</creator><creator>Hirai, H.</creator><creator>Kawagoe, A.</creator><creator>Izumi, T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0009-0006-4467-8296</orcidid><orcidid>https://orcid.org/0000-0003-3560-3613</orcidid><orcidid>https://orcid.org/0000-0001-6624-3484</orcidid><orcidid>https://orcid.org/0000-0002-6635-1618</orcidid><orcidid>https://orcid.org/0000-0003-1097-2869</orcidid><orcidid>https://orcid.org/0000-0003-2841-286X</orcidid><orcidid>https://orcid.org/0000-0002-5470-1190</orcidid></search><sort><creationdate>202508</creationdate><title>Performance Testing of 400 kW-Rated REBCO Superconducting Synchronous Machine in Low-Temperature and Low-Pressure Environments</title><author>Miyazaki, H. ; Iwakuma, M. ; Emori, Y. ; Konishi, R. ; Yoshida, K. ; Sato, S. ; Sasa, H. ; Miura, S. ; Sagara, I. ; Suzuki, Y. ; Konno, M. ; Hirai, H. ; Kawagoe, A. ; Izumi, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c913-4a0545369a87fa882c2a68638f37aa9c88eceabd9dba1f3b23aba02df344d44e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Aircraft</topic><topic>Aircraft components</topic><topic>Aircraft equipment</topic><topic>Coils</topic><topic>Current measurement</topic><topic>Electric aircraft</topic><topic>Electric propulsion</topic><topic>Feasibility studies</topic><topic>generator</topic><topic>Generators</topic><topic>Helium</topic><topic>Line voltage</topic><topic>Load tests</topic><topic>Low pressure</topic><topic>Low temperature</topic><topic>motor</topic><topic>Propulsion system performance</topic><topic>REBCO tape</topic><topic>Short circuit currents</topic><topic>Short circuit testing</topic><topic>Superconducting coils</topic><topic>superconducting synchronous machine</topic><topic>Synchronous machines</topic><topic>System reliability</topic><topic>Temperature measurement</topic><topic>Velocity control</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miyazaki, H.</creatorcontrib><creatorcontrib>Iwakuma, M.</creatorcontrib><creatorcontrib>Emori, Y.</creatorcontrib><creatorcontrib>Konishi, R.</creatorcontrib><creatorcontrib>Yoshida, K.</creatorcontrib><creatorcontrib>Sato, S.</creatorcontrib><creatorcontrib>Sasa, H.</creatorcontrib><creatorcontrib>Miura, S.</creatorcontrib><creatorcontrib>Sagara, I.</creatorcontrib><creatorcontrib>Suzuki, Y.</creatorcontrib><creatorcontrib>Konno, M.</creatorcontrib><creatorcontrib>Hirai, H.</creatorcontrib><creatorcontrib>Kawagoe, A.</creatorcontrib><creatorcontrib>Izumi, T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on applied superconductivity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Miyazaki, H.</au><au>Iwakuma, M.</au><au>Emori, Y.</au><au>Konishi, R.</au><au>Yoshida, K.</au><au>Sato, S.</au><au>Sasa, H.</au><au>Miura, S.</au><au>Sagara, I.</au><au>Suzuki, Y.</au><au>Konno, M.</au><au>Hirai, H.</au><au>Kawagoe, A.</au><au>Izumi, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance Testing of 400 kW-Rated REBCO Superconducting Synchronous Machine in Low-Temperature and Low-Pressure Environments</atitle><jtitle>IEEE transactions on applied superconductivity</jtitle><stitle>TASC</stitle><date>2025-08</date><risdate>2025</risdate><volume>35</volume><issue>5</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1051-8223</issn><eissn>1558-2515</eissn><coden>ITASE9</coden><abstract>Aircraft equipment needs to maintain stable operation in low-temperature and low-pressure environments. This study assesses the feasibility of operating a developed machine under such conditions. Rotational tests were conducted in an environment that simulated the conditions required for aircraft-mounted equipment. The synchronous machine was installed in a thermostatic chamber that was set to a temperature of −55 °C and pressure of 11 kPa, which mimics the conditions at an altitude of 15,000 m. The machine demonstrated stable operation at a rotational speed of 180 rpm, with a field current of 50 A and an armature current amplitude of 100 A at a frequency of 3 Hz. The synchronous machine was tested in generator mode at ground level under no-load and three-phase short-circuit conditions to evaluate its rated operation under a normal environment. In the no-load test, the field current and rotational speed were increased from 10 A to 110 A and 100 rpm to 2,500 rpm, respectively, and the maximum line voltage was 590 V. In the three-phase short-circuit test, the U, V, and W phases exhibited maximum short-circuit currents of 490 A with a field current of 45 A and rotational speed of 100 rpm. These results confirm that the synchronous machine operated stably at 2,500 rpm with an output of 250 kW in generator mode. The stable performance of the machine under these conditions suggests its potential for enhancing the efficiency, power density, and reliability of electric propulsion systems in aviation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASC.2024.3520532</doi><tpages>5</tpages><orcidid>https://orcid.org/0009-0006-4467-8296</orcidid><orcidid>https://orcid.org/0000-0003-3560-3613</orcidid><orcidid>https://orcid.org/0000-0001-6624-3484</orcidid><orcidid>https://orcid.org/0000-0002-6635-1618</orcidid><orcidid>https://orcid.org/0000-0003-1097-2869</orcidid><orcidid>https://orcid.org/0000-0003-2841-286X</orcidid><orcidid>https://orcid.org/0000-0002-5470-1190</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1051-8223
ispartof IEEE transactions on applied superconductivity, 2025-08, Vol.35 (5), p.1-5
issn 1051-8223
1558-2515
language eng
recordid cdi_proquest_journals_3152762963
source IEEE Electronic Library (IEL)
subjects Aircraft
Aircraft components
Aircraft equipment
Coils
Current measurement
Electric aircraft
Electric propulsion
Feasibility studies
generator
Generators
Helium
Line voltage
Load tests
Low pressure
Low temperature
motor
Propulsion system performance
REBCO tape
Short circuit currents
Short circuit testing
Superconducting coils
superconducting synchronous machine
Synchronous machines
System reliability
Temperature measurement
Velocity control
Voltage measurement
title Performance Testing of 400 kW-Rated REBCO Superconducting Synchronous Machine in Low-Temperature and Low-Pressure Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T03%3A25%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20Testing%20of%20400%20kW-Rated%20REBCO%20Superconducting%20Synchronous%20Machine%20in%20Low-Temperature%20and%20Low-Pressure%20Environments&rft.jtitle=IEEE%20transactions%20on%20applied%20superconductivity&rft.au=Miyazaki,%20H.&rft.date=2025-08&rft.volume=35&rft.issue=5&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1051-8223&rft.eissn=1558-2515&rft.coden=ITASE9&rft_id=info:doi/10.1109/TASC.2024.3520532&rft_dat=%3Cproquest_RIE%3E3152762963%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152762963&rft_id=info:pmid/&rft_ieee_id=10807805&rfr_iscdi=true