Versatile optical frequency division with Kerr-induced synchronization at tunable microcomb synthetic dispersive waves
Kerr-induced synchronization (KIS) provides a key tool for the control and stabilization of a dissipative Kerr soliton (DKS) frequency comb, enabled by the capture of a comb tooth by an injected reference laser. Efficient KIS relies on large locking bandwidth, meaning both the comb tooth and intraca...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2025, Vol.19 (1), p.36-43 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 43 |
---|---|
container_issue | 1 |
container_start_page | 36 |
container_title | Nature photonics |
container_volume | 19 |
creator | Moille, Grégory Shandilya, Pradyoth Niang, Alioune Menyuk, Curtis Carter, Gary Srinivasan, Kartik |
description | Kerr-induced synchronization (KIS) provides a key tool for the control and stabilization of a dissipative Kerr soliton (DKS) frequency comb, enabled by the capture of a comb tooth by an injected reference laser. Efficient KIS relies on large locking bandwidth, meaning both the comb tooth and intracavity reference power need to be sufficiently large. Although KIS can theoretically occur at any comb tooth, large modal separations from the main pump to achieve large optical frequency division factors are often difficult or unfeasible due to cavity dispersion. While tailoring the dispersion to generate dispersive waves can support on-resonance KIS far from the main pump, this approach restricts synchronization to specific wavelengths. Here we demonstrate an alternative KIS method that allows efficient synchronization at arbitrary modes by multi-pumping a microresonator. This creates a multicolour DKS with a main and an auxiliary comb, the latter enabling the creation of a synthetic dispersive wave. As cross-phase modulation leads to a unique group velocity for both the soliton comb and the auxiliary comb, repetition rate disciplining of the auxiliary comb through KIS automatically controls the DKS microcomb. We explore this colour-KIS phenomenon theoretically and experimentally, showing control and tuning of the soliton microcomb repetition rate, resulting in optical frequency division independent of the main pump noise properties.
Generalizing the ‘Kerr-induced synchronization’ concept by means of tailoring the synchronization at arbitrary modes allows to lock and control the repetition rate of a dissipative Kerr soliton frequency comb generated in a silicon nitride microring resonator. |
doi_str_mv | 10.1038/s41566-024-01540-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3152366509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3152366509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-7b0252e4eb07a125761e7a8621c3a079cb80d328307269095bbf7e9653bbf7643</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMQfOduwkI6r4EkgswGo5zoW6apNiO4nKr8clCDYm3_C8z_leQs4pXFLgxZXPqJAyBZalQEUG6XhAZjTPyjQrSn74OxfimJx4vwIQvGRsRoY3dF4Hu8ak2wZr9DppHH702JpdUtvBetu1yWjDMnlE51Lb1r3BOvG71ixd19rPGI6EDknoW11Fz8Ya15luU-2hsMRojSa_jYvsgMmoB_Sn5KjRa49nP--cvN7evCzu06fnu4fF9VNqGEBI8wqYYJhhBbmmTOSSYq4LyajhGvLSVAXUnBUcciZLKEVVNTmWUvD9IDM-JxeTd-u6eJQPatX1ro0rFaeCcSkFlJFiExU_7r3DRm2d3Wi3UxTUvl819ativ-q7XzXGEJ9CPsLtO7o_9T-pL1eIgNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152366509</pqid></control><display><type>article</type><title>Versatile optical frequency division with Kerr-induced synchronization at tunable microcomb synthetic dispersive waves</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Moille, Grégory ; Shandilya, Pradyoth ; Niang, Alioune ; Menyuk, Curtis ; Carter, Gary ; Srinivasan, Kartik</creator><creatorcontrib>Moille, Grégory ; Shandilya, Pradyoth ; Niang, Alioune ; Menyuk, Curtis ; Carter, Gary ; Srinivasan, Kartik</creatorcontrib><description>Kerr-induced synchronization (KIS) provides a key tool for the control and stabilization of a dissipative Kerr soliton (DKS) frequency comb, enabled by the capture of a comb tooth by an injected reference laser. Efficient KIS relies on large locking bandwidth, meaning both the comb tooth and intracavity reference power need to be sufficiently large. Although KIS can theoretically occur at any comb tooth, large modal separations from the main pump to achieve large optical frequency division factors are often difficult or unfeasible due to cavity dispersion. While tailoring the dispersion to generate dispersive waves can support on-resonance KIS far from the main pump, this approach restricts synchronization to specific wavelengths. Here we demonstrate an alternative KIS method that allows efficient synchronization at arbitrary modes by multi-pumping a microresonator. This creates a multicolour DKS with a main and an auxiliary comb, the latter enabling the creation of a synthetic dispersive wave. As cross-phase modulation leads to a unique group velocity for both the soliton comb and the auxiliary comb, repetition rate disciplining of the auxiliary comb through KIS automatically controls the DKS microcomb. We explore this colour-KIS phenomenon theoretically and experimentally, showing control and tuning of the soliton microcomb repetition rate, resulting in optical frequency division independent of the main pump noise properties.
Generalizing the ‘Kerr-induced synchronization’ concept by means of tailoring the synchronization at arbitrary modes allows to lock and control the repetition rate of a dissipative Kerr soliton frequency comb generated in a silicon nitride microring resonator.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-024-01540-w</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1111/1112 ; 639/624/400/385 ; 639/925/927/1021 ; Applied and Technical Physics ; Dissipation ; Group velocity ; Noise control ; Optical frequency ; Optical properties ; Optical pumping ; Phase modulation ; Physics ; Physics and Astronomy ; Quantum Physics ; Repetition ; Silicon nitride ; Solitary waves ; Synchronism ; Synchronization ; Teeth ; Wave dispersion ; Wavelengths</subject><ispartof>Nature photonics, 2025, Vol.19 (1), p.36-43</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024</rights><rights>Copyright Nature Publishing Group Jan 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-7b0252e4eb07a125761e7a8621c3a079cb80d328307269095bbf7e9653bbf7643</cites><orcidid>0000-0001-8117-9580 ; 0000-0003-2589-3688 ; 0000-0003-0269-8433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-024-01540-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-024-01540-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Moille, Grégory</creatorcontrib><creatorcontrib>Shandilya, Pradyoth</creatorcontrib><creatorcontrib>Niang, Alioune</creatorcontrib><creatorcontrib>Menyuk, Curtis</creatorcontrib><creatorcontrib>Carter, Gary</creatorcontrib><creatorcontrib>Srinivasan, Kartik</creatorcontrib><title>Versatile optical frequency division with Kerr-induced synchronization at tunable microcomb synthetic dispersive waves</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><description>Kerr-induced synchronization (KIS) provides a key tool for the control and stabilization of a dissipative Kerr soliton (DKS) frequency comb, enabled by the capture of a comb tooth by an injected reference laser. Efficient KIS relies on large locking bandwidth, meaning both the comb tooth and intracavity reference power need to be sufficiently large. Although KIS can theoretically occur at any comb tooth, large modal separations from the main pump to achieve large optical frequency division factors are often difficult or unfeasible due to cavity dispersion. While tailoring the dispersion to generate dispersive waves can support on-resonance KIS far from the main pump, this approach restricts synchronization to specific wavelengths. Here we demonstrate an alternative KIS method that allows efficient synchronization at arbitrary modes by multi-pumping a microresonator. This creates a multicolour DKS with a main and an auxiliary comb, the latter enabling the creation of a synthetic dispersive wave. As cross-phase modulation leads to a unique group velocity for both the soliton comb and the auxiliary comb, repetition rate disciplining of the auxiliary comb through KIS automatically controls the DKS microcomb. We explore this colour-KIS phenomenon theoretically and experimentally, showing control and tuning of the soliton microcomb repetition rate, resulting in optical frequency division independent of the main pump noise properties.
Generalizing the ‘Kerr-induced synchronization’ concept by means of tailoring the synchronization at arbitrary modes allows to lock and control the repetition rate of a dissipative Kerr soliton frequency comb generated in a silicon nitride microring resonator.</description><subject>639/624/1111/1112</subject><subject>639/624/400/385</subject><subject>639/925/927/1021</subject><subject>Applied and Technical Physics</subject><subject>Dissipation</subject><subject>Group velocity</subject><subject>Noise control</subject><subject>Optical frequency</subject><subject>Optical properties</subject><subject>Optical pumping</subject><subject>Phase modulation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Repetition</subject><subject>Silicon nitride</subject><subject>Solitary waves</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Teeth</subject><subject>Wave dispersion</subject><subject>Wavelengths</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5giMQfOduwkI6r4EkgswGo5zoW6apNiO4nKr8clCDYm3_C8z_leQs4pXFLgxZXPqJAyBZalQEUG6XhAZjTPyjQrSn74OxfimJx4vwIQvGRsRoY3dF4Hu8ak2wZr9DppHH702JpdUtvBetu1yWjDMnlE51Lb1r3BOvG71ixd19rPGI6EDknoW11Fz8Ya15luU-2hsMRojSa_jYvsgMmoB_Sn5KjRa49nP--cvN7evCzu06fnu4fF9VNqGEBI8wqYYJhhBbmmTOSSYq4LyajhGvLSVAXUnBUcciZLKEVVNTmWUvD9IDM-JxeTd-u6eJQPatX1ro0rFaeCcSkFlJFiExU_7r3DRm2d3Wi3UxTUvl819ativ-q7XzXGEJ9CPsLtO7o_9T-pL1eIgNg</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Moille, Grégory</creator><creator>Shandilya, Pradyoth</creator><creator>Niang, Alioune</creator><creator>Menyuk, Curtis</creator><creator>Carter, Gary</creator><creator>Srinivasan, Kartik</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-8117-9580</orcidid><orcidid>https://orcid.org/0000-0003-2589-3688</orcidid><orcidid>https://orcid.org/0000-0003-0269-8433</orcidid></search><sort><creationdate>2025</creationdate><title>Versatile optical frequency division with Kerr-induced synchronization at tunable microcomb synthetic dispersive waves</title><author>Moille, Grégory ; Shandilya, Pradyoth ; Niang, Alioune ; Menyuk, Curtis ; Carter, Gary ; Srinivasan, Kartik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-7b0252e4eb07a125761e7a8621c3a079cb80d328307269095bbf7e9653bbf7643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>639/624/1111/1112</topic><topic>639/624/400/385</topic><topic>639/925/927/1021</topic><topic>Applied and Technical Physics</topic><topic>Dissipation</topic><topic>Group velocity</topic><topic>Noise control</topic><topic>Optical frequency</topic><topic>Optical properties</topic><topic>Optical pumping</topic><topic>Phase modulation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Repetition</topic><topic>Silicon nitride</topic><topic>Solitary waves</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Teeth</topic><topic>Wave dispersion</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moille, Grégory</creatorcontrib><creatorcontrib>Shandilya, Pradyoth</creatorcontrib><creatorcontrib>Niang, Alioune</creatorcontrib><creatorcontrib>Menyuk, Curtis</creatorcontrib><creatorcontrib>Carter, Gary</creatorcontrib><creatorcontrib>Srinivasan, Kartik</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moille, Grégory</au><au>Shandilya, Pradyoth</au><au>Niang, Alioune</au><au>Menyuk, Curtis</au><au>Carter, Gary</au><au>Srinivasan, Kartik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Versatile optical frequency division with Kerr-induced synchronization at tunable microcomb synthetic dispersive waves</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><date>2025</date><risdate>2025</risdate><volume>19</volume><issue>1</issue><spage>36</spage><epage>43</epage><pages>36-43</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Kerr-induced synchronization (KIS) provides a key tool for the control and stabilization of a dissipative Kerr soliton (DKS) frequency comb, enabled by the capture of a comb tooth by an injected reference laser. Efficient KIS relies on large locking bandwidth, meaning both the comb tooth and intracavity reference power need to be sufficiently large. Although KIS can theoretically occur at any comb tooth, large modal separations from the main pump to achieve large optical frequency division factors are often difficult or unfeasible due to cavity dispersion. While tailoring the dispersion to generate dispersive waves can support on-resonance KIS far from the main pump, this approach restricts synchronization to specific wavelengths. Here we demonstrate an alternative KIS method that allows efficient synchronization at arbitrary modes by multi-pumping a microresonator. This creates a multicolour DKS with a main and an auxiliary comb, the latter enabling the creation of a synthetic dispersive wave. As cross-phase modulation leads to a unique group velocity for both the soliton comb and the auxiliary comb, repetition rate disciplining of the auxiliary comb through KIS automatically controls the DKS microcomb. We explore this colour-KIS phenomenon theoretically and experimentally, showing control and tuning of the soliton microcomb repetition rate, resulting in optical frequency division independent of the main pump noise properties.
Generalizing the ‘Kerr-induced synchronization’ concept by means of tailoring the synchronization at arbitrary modes allows to lock and control the repetition rate of a dissipative Kerr soliton frequency comb generated in a silicon nitride microring resonator.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-024-01540-w</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8117-9580</orcidid><orcidid>https://orcid.org/0000-0003-2589-3688</orcidid><orcidid>https://orcid.org/0000-0003-0269-8433</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2025, Vol.19 (1), p.36-43 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_journals_3152366509 |
source | Springer Nature - Complete Springer Journals; Nature |
subjects | 639/624/1111/1112 639/624/400/385 639/925/927/1021 Applied and Technical Physics Dissipation Group velocity Noise control Optical frequency Optical properties Optical pumping Phase modulation Physics Physics and Astronomy Quantum Physics Repetition Silicon nitride Solitary waves Synchronism Synchronization Teeth Wave dispersion Wavelengths |
title | Versatile optical frequency division with Kerr-induced synchronization at tunable microcomb synthetic dispersive waves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Versatile%20optical%20frequency%20division%20with%20Kerr-induced%20synchronization%20at%20tunable%20microcomb%20synthetic%20dispersive%20waves&rft.jtitle=Nature%20photonics&rft.au=Moille,%20Gr%C3%A9gory&rft.date=2025&rft.volume=19&rft.issue=1&rft.spage=36&rft.epage=43&rft.pages=36-43&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-024-01540-w&rft_dat=%3Cproquest_cross%3E3152366509%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152366509&rft_id=info:pmid/&rfr_iscdi=true |