Versatile optical frequency division with Kerr-induced synchronization at tunable microcomb synthetic dispersive waves

Kerr-induced synchronization (KIS) provides a key tool for the control and stabilization of a dissipative Kerr soliton (DKS) frequency comb, enabled by the capture of a comb tooth by an injected reference laser. Efficient KIS relies on large locking bandwidth, meaning both the comb tooth and intraca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature photonics 2025, Vol.19 (1), p.36-43
Hauptverfasser: Moille, Grégory, Shandilya, Pradyoth, Niang, Alioune, Menyuk, Curtis, Carter, Gary, Srinivasan, Kartik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue 1
container_start_page 36
container_title Nature photonics
container_volume 19
creator Moille, Grégory
Shandilya, Pradyoth
Niang, Alioune
Menyuk, Curtis
Carter, Gary
Srinivasan, Kartik
description Kerr-induced synchronization (KIS) provides a key tool for the control and stabilization of a dissipative Kerr soliton (DKS) frequency comb, enabled by the capture of a comb tooth by an injected reference laser. Efficient KIS relies on large locking bandwidth, meaning both the comb tooth and intracavity reference power need to be sufficiently large. Although KIS can theoretically occur at any comb tooth, large modal separations from the main pump to achieve large optical frequency division factors are often difficult or unfeasible due to cavity dispersion. While tailoring the dispersion to generate dispersive waves can support on-resonance KIS far from the main pump, this approach restricts synchronization to specific wavelengths. Here we demonstrate an alternative KIS method that allows efficient synchronization at arbitrary modes by multi-pumping a microresonator. This creates a multicolour DKS with a main and an auxiliary comb, the latter enabling the creation of a synthetic dispersive wave. As cross-phase modulation leads to a unique group velocity for both the soliton comb and the auxiliary comb, repetition rate disciplining of the auxiliary comb through KIS automatically controls the DKS microcomb. We explore this colour-KIS phenomenon theoretically and experimentally, showing control and tuning of the soliton microcomb repetition rate, resulting in optical frequency division independent of the main pump noise properties. Generalizing the ‘Kerr-induced synchronization’ concept by means of tailoring the synchronization at arbitrary modes allows to lock and control the repetition rate of a dissipative Kerr soliton frequency comb generated in a silicon nitride microring resonator.
doi_str_mv 10.1038/s41566-024-01540-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3152366509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3152366509</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-7b0252e4eb07a125761e7a8621c3a079cb80d328307269095bbf7e9653bbf7643</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwB5giMQfOduwkI6r4EkgswGo5zoW6apNiO4nKr8clCDYm3_C8z_leQs4pXFLgxZXPqJAyBZalQEUG6XhAZjTPyjQrSn74OxfimJx4vwIQvGRsRoY3dF4Hu8ak2wZr9DppHH702JpdUtvBetu1yWjDMnlE51Lb1r3BOvG71ixd19rPGI6EDknoW11Fz8Ya15luU-2hsMRojSa_jYvsgMmoB_Sn5KjRa49nP--cvN7evCzu06fnu4fF9VNqGEBI8wqYYJhhBbmmTOSSYq4LyajhGvLSVAXUnBUcciZLKEVVNTmWUvD9IDM-JxeTd-u6eJQPatX1ro0rFaeCcSkFlJFiExU_7r3DRm2d3Wi3UxTUvl819ativ-q7XzXGEJ9CPsLtO7o_9T-pL1eIgNg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152366509</pqid></control><display><type>article</type><title>Versatile optical frequency division with Kerr-induced synchronization at tunable microcomb synthetic dispersive waves</title><source>Springer Nature - Complete Springer Journals</source><source>Nature</source><creator>Moille, Grégory ; Shandilya, Pradyoth ; Niang, Alioune ; Menyuk, Curtis ; Carter, Gary ; Srinivasan, Kartik</creator><creatorcontrib>Moille, Grégory ; Shandilya, Pradyoth ; Niang, Alioune ; Menyuk, Curtis ; Carter, Gary ; Srinivasan, Kartik</creatorcontrib><description>Kerr-induced synchronization (KIS) provides a key tool for the control and stabilization of a dissipative Kerr soliton (DKS) frequency comb, enabled by the capture of a comb tooth by an injected reference laser. Efficient KIS relies on large locking bandwidth, meaning both the comb tooth and intracavity reference power need to be sufficiently large. Although KIS can theoretically occur at any comb tooth, large modal separations from the main pump to achieve large optical frequency division factors are often difficult or unfeasible due to cavity dispersion. While tailoring the dispersion to generate dispersive waves can support on-resonance KIS far from the main pump, this approach restricts synchronization to specific wavelengths. Here we demonstrate an alternative KIS method that allows efficient synchronization at arbitrary modes by multi-pumping a microresonator. This creates a multicolour DKS with a main and an auxiliary comb, the latter enabling the creation of a synthetic dispersive wave. As cross-phase modulation leads to a unique group velocity for both the soliton comb and the auxiliary comb, repetition rate disciplining of the auxiliary comb through KIS automatically controls the DKS microcomb. We explore this colour-KIS phenomenon theoretically and experimentally, showing control and tuning of the soliton microcomb repetition rate, resulting in optical frequency division independent of the main pump noise properties. Generalizing the ‘Kerr-induced synchronization’ concept by means of tailoring the synchronization at arbitrary modes allows to lock and control the repetition rate of a dissipative Kerr soliton frequency comb generated in a silicon nitride microring resonator.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-024-01540-w</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1111/1112 ; 639/624/400/385 ; 639/925/927/1021 ; Applied and Technical Physics ; Dissipation ; Group velocity ; Noise control ; Optical frequency ; Optical properties ; Optical pumping ; Phase modulation ; Physics ; Physics and Astronomy ; Quantum Physics ; Repetition ; Silicon nitride ; Solitary waves ; Synchronism ; Synchronization ; Teeth ; Wave dispersion ; Wavelengths</subject><ispartof>Nature photonics, 2025, Vol.19 (1), p.36-43</ispartof><rights>This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2024</rights><rights>Copyright Nature Publishing Group Jan 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-7b0252e4eb07a125761e7a8621c3a079cb80d328307269095bbf7e9653bbf7643</cites><orcidid>0000-0001-8117-9580 ; 0000-0003-2589-3688 ; 0000-0003-0269-8433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-024-01540-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-024-01540-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Moille, Grégory</creatorcontrib><creatorcontrib>Shandilya, Pradyoth</creatorcontrib><creatorcontrib>Niang, Alioune</creatorcontrib><creatorcontrib>Menyuk, Curtis</creatorcontrib><creatorcontrib>Carter, Gary</creatorcontrib><creatorcontrib>Srinivasan, Kartik</creatorcontrib><title>Versatile optical frequency division with Kerr-induced synchronization at tunable microcomb synthetic dispersive waves</title><title>Nature photonics</title><addtitle>Nat. Photon</addtitle><description>Kerr-induced synchronization (KIS) provides a key tool for the control and stabilization of a dissipative Kerr soliton (DKS) frequency comb, enabled by the capture of a comb tooth by an injected reference laser. Efficient KIS relies on large locking bandwidth, meaning both the comb tooth and intracavity reference power need to be sufficiently large. Although KIS can theoretically occur at any comb tooth, large modal separations from the main pump to achieve large optical frequency division factors are often difficult or unfeasible due to cavity dispersion. While tailoring the dispersion to generate dispersive waves can support on-resonance KIS far from the main pump, this approach restricts synchronization to specific wavelengths. Here we demonstrate an alternative KIS method that allows efficient synchronization at arbitrary modes by multi-pumping a microresonator. This creates a multicolour DKS with a main and an auxiliary comb, the latter enabling the creation of a synthetic dispersive wave. As cross-phase modulation leads to a unique group velocity for both the soliton comb and the auxiliary comb, repetition rate disciplining of the auxiliary comb through KIS automatically controls the DKS microcomb. We explore this colour-KIS phenomenon theoretically and experimentally, showing control and tuning of the soliton microcomb repetition rate, resulting in optical frequency division independent of the main pump noise properties. Generalizing the ‘Kerr-induced synchronization’ concept by means of tailoring the synchronization at arbitrary modes allows to lock and control the repetition rate of a dissipative Kerr soliton frequency comb generated in a silicon nitride microring resonator.</description><subject>639/624/1111/1112</subject><subject>639/624/400/385</subject><subject>639/925/927/1021</subject><subject>Applied and Technical Physics</subject><subject>Dissipation</subject><subject>Group velocity</subject><subject>Noise control</subject><subject>Optical frequency</subject><subject>Optical properties</subject><subject>Optical pumping</subject><subject>Phase modulation</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Repetition</subject><subject>Silicon nitride</subject><subject>Solitary waves</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>Teeth</subject><subject>Wave dispersion</subject><subject>Wavelengths</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwB5giMQfOduwkI6r4EkgswGo5zoW6apNiO4nKr8clCDYm3_C8z_leQs4pXFLgxZXPqJAyBZalQEUG6XhAZjTPyjQrSn74OxfimJx4vwIQvGRsRoY3dF4Hu8ak2wZr9DppHH702JpdUtvBetu1yWjDMnlE51Lb1r3BOvG71ixd19rPGI6EDknoW11Fz8Ya15luU-2hsMRojSa_jYvsgMmoB_Sn5KjRa49nP--cvN7evCzu06fnu4fF9VNqGEBI8wqYYJhhBbmmTOSSYq4LyajhGvLSVAXUnBUcciZLKEVVNTmWUvD9IDM-JxeTd-u6eJQPatX1ro0rFaeCcSkFlJFiExU_7r3DRm2d3Wi3UxTUvl819ativ-q7XzXGEJ9CPsLtO7o_9T-pL1eIgNg</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Moille, Grégory</creator><creator>Shandilya, Pradyoth</creator><creator>Niang, Alioune</creator><creator>Menyuk, Curtis</creator><creator>Carter, Gary</creator><creator>Srinivasan, Kartik</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0001-8117-9580</orcidid><orcidid>https://orcid.org/0000-0003-2589-3688</orcidid><orcidid>https://orcid.org/0000-0003-0269-8433</orcidid></search><sort><creationdate>2025</creationdate><title>Versatile optical frequency division with Kerr-induced synchronization at tunable microcomb synthetic dispersive waves</title><author>Moille, Grégory ; Shandilya, Pradyoth ; Niang, Alioune ; Menyuk, Curtis ; Carter, Gary ; Srinivasan, Kartik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-7b0252e4eb07a125761e7a8621c3a079cb80d328307269095bbf7e9653bbf7643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>639/624/1111/1112</topic><topic>639/624/400/385</topic><topic>639/925/927/1021</topic><topic>Applied and Technical Physics</topic><topic>Dissipation</topic><topic>Group velocity</topic><topic>Noise control</topic><topic>Optical frequency</topic><topic>Optical properties</topic><topic>Optical pumping</topic><topic>Phase modulation</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Repetition</topic><topic>Silicon nitride</topic><topic>Solitary waves</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>Teeth</topic><topic>Wave dispersion</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moille, Grégory</creatorcontrib><creatorcontrib>Shandilya, Pradyoth</creatorcontrib><creatorcontrib>Niang, Alioune</creatorcontrib><creatorcontrib>Menyuk, Curtis</creatorcontrib><creatorcontrib>Carter, Gary</creatorcontrib><creatorcontrib>Srinivasan, Kartik</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moille, Grégory</au><au>Shandilya, Pradyoth</au><au>Niang, Alioune</au><au>Menyuk, Curtis</au><au>Carter, Gary</au><au>Srinivasan, Kartik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Versatile optical frequency division with Kerr-induced synchronization at tunable microcomb synthetic dispersive waves</atitle><jtitle>Nature photonics</jtitle><stitle>Nat. Photon</stitle><date>2025</date><risdate>2025</risdate><volume>19</volume><issue>1</issue><spage>36</spage><epage>43</epage><pages>36-43</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Kerr-induced synchronization (KIS) provides a key tool for the control and stabilization of a dissipative Kerr soliton (DKS) frequency comb, enabled by the capture of a comb tooth by an injected reference laser. Efficient KIS relies on large locking bandwidth, meaning both the comb tooth and intracavity reference power need to be sufficiently large. Although KIS can theoretically occur at any comb tooth, large modal separations from the main pump to achieve large optical frequency division factors are often difficult or unfeasible due to cavity dispersion. While tailoring the dispersion to generate dispersive waves can support on-resonance KIS far from the main pump, this approach restricts synchronization to specific wavelengths. Here we demonstrate an alternative KIS method that allows efficient synchronization at arbitrary modes by multi-pumping a microresonator. This creates a multicolour DKS with a main and an auxiliary comb, the latter enabling the creation of a synthetic dispersive wave. As cross-phase modulation leads to a unique group velocity for both the soliton comb and the auxiliary comb, repetition rate disciplining of the auxiliary comb through KIS automatically controls the DKS microcomb. We explore this colour-KIS phenomenon theoretically and experimentally, showing control and tuning of the soliton microcomb repetition rate, resulting in optical frequency division independent of the main pump noise properties. Generalizing the ‘Kerr-induced synchronization’ concept by means of tailoring the synchronization at arbitrary modes allows to lock and control the repetition rate of a dissipative Kerr soliton frequency comb generated in a silicon nitride microring resonator.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-024-01540-w</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8117-9580</orcidid><orcidid>https://orcid.org/0000-0003-2589-3688</orcidid><orcidid>https://orcid.org/0000-0003-0269-8433</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1749-4885
ispartof Nature photonics, 2025, Vol.19 (1), p.36-43
issn 1749-4885
1749-4893
language eng
recordid cdi_proquest_journals_3152366509
source Springer Nature - Complete Springer Journals; Nature
subjects 639/624/1111/1112
639/624/400/385
639/925/927/1021
Applied and Technical Physics
Dissipation
Group velocity
Noise control
Optical frequency
Optical properties
Optical pumping
Phase modulation
Physics
Physics and Astronomy
Quantum Physics
Repetition
Silicon nitride
Solitary waves
Synchronism
Synchronization
Teeth
Wave dispersion
Wavelengths
title Versatile optical frequency division with Kerr-induced synchronization at tunable microcomb synthetic dispersive waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T11%3A41%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Versatile%20optical%20frequency%20division%20with%20Kerr-induced%20synchronization%20at%20tunable%20microcomb%20synthetic%20dispersive%20waves&rft.jtitle=Nature%20photonics&rft.au=Moille,%20Gr%C3%A9gory&rft.date=2025&rft.volume=19&rft.issue=1&rft.spage=36&rft.epage=43&rft.pages=36-43&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-024-01540-w&rft_dat=%3Cproquest_cross%3E3152366509%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152366509&rft_id=info:pmid/&rfr_iscdi=true