Topological Rainbow Trapping of Plate‐Mode Waves Based on 1D Gradual Phononic Crystal Slabs
In this article, the concept of topological rainbow is introduced into the plate‐mode waves system of 1D phononic crystal slabs, achieving adjustable topological elastic rainbow trapping by employing gradient‐tuned Su–Schrieffer–Heeger (SSH) structures. First, based on the classical SSH model, a pho...
Gespeichert in:
Veröffentlicht in: | Physica status solidi. PSS-RRL. Rapid research letters 2025-01, Vol.19 (1), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Physica status solidi. PSS-RRL. Rapid research letters |
container_volume | 19 |
creator | Bu, Xiangzhen Huang, Hongbo Chen, Jiujiu Xie, Xiaoping |
description | In this article, the concept of topological rainbow is introduced into the plate‐mode waves system of 1D phononic crystal slabs, achieving adjustable topological elastic rainbow trapping by employing gradient‐tuned Su–Schrieffer–Heeger (SSH) structures. First, based on the classical SSH model, a phononic crystal slab composed of steel and aluminum is set up, and the band structure of plate‐mode waves is studied using the finite‐element method. Band inversion can be induced by changing the height of the steel in the unit cell, leading to topological phase transitions. Then, phononic crystals with different topological properties are connected to form a phononic crystal slab, realizing topological interface states. Furthermore, a sandwich‐like ultrathin structure is constructed to couple the adjacent two topological interface states. Finally, a 1D alternating SSH structure of phononic crystal slab is designed under gradient structural parameters, and based on eigenfrequency and full‐wave simulation, adjustable topological rainbow trapping based on coupled interface states is achieved. The designed device can trap wide frequencies exceeding 15 kHz, providing more possibilities for the design of elastic‐energy‐harvesting devices.
Topological rainbow in 1D phononic crystal slabs, achieving adjustable elastic trapping using gradient‐tuned Su–Schrieffer–Heeger structures, is introduced. By varying steel heights, band inversion induces topological phase transitions, forming interface states. A sandwich‐like structure couples these interface states, enabling rainbow trapping frequencies exceeding 15 kHz, outside the common bandgap, expanding design possibilities for energy‐harvesting devices. |
doi_str_mv | 10.1002/pssr.202400205 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3152031786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3152031786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2025-611fe368a6805aca99e4d02d919d98903bc2f0cd60f44587e90814075ab7e6093</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EEqWwMltiTjk7thOPUGhBKqJqi5iQ5SROSRXiYLdU3XgEnpEnwVVRGZl8Pv3f3elD6JxAjwDQy9Z716NAWfgAP0AdkgoaCZrA4b7m7BideL8A4DJhcQe9zGxrazuvcl3jia6azK7xzOm2rZo5tiUe13ppvj-_Hmxh8LP-MB5fa28KbBtMbvDQ6WIV0PGrbWxT5bjvNn4ZGtNaZ_4UHZW69ubs9-2ip8HtrH8XjR6H9_2rUZSHe3kkCClNLFItUuA611IaVgAtJJGFTCXEWU5LyAsBJWM8TYyElDBIuM4SI0DGXXSxm9s6-74yfqkWduWasFLFhFOISZKKkOrtUrmzwZUpVeuqN-02ioDaKlRbhWqvMAByB6yr2mz-SavxdDr5Y38A8et1GQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152031786</pqid></control><display><type>article</type><title>Topological Rainbow Trapping of Plate‐Mode Waves Based on 1D Gradual Phononic Crystal Slabs</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bu, Xiangzhen ; Huang, Hongbo ; Chen, Jiujiu ; Xie, Xiaoping</creator><creatorcontrib>Bu, Xiangzhen ; Huang, Hongbo ; Chen, Jiujiu ; Xie, Xiaoping</creatorcontrib><description>In this article, the concept of topological rainbow is introduced into the plate‐mode waves system of 1D phononic crystal slabs, achieving adjustable topological elastic rainbow trapping by employing gradient‐tuned Su–Schrieffer–Heeger (SSH) structures. First, based on the classical SSH model, a phononic crystal slab composed of steel and aluminum is set up, and the band structure of plate‐mode waves is studied using the finite‐element method. Band inversion can be induced by changing the height of the steel in the unit cell, leading to topological phase transitions. Then, phononic crystals with different topological properties are connected to form a phononic crystal slab, realizing topological interface states. Furthermore, a sandwich‐like ultrathin structure is constructed to couple the adjacent two topological interface states. Finally, a 1D alternating SSH structure of phononic crystal slab is designed under gradient structural parameters, and based on eigenfrequency and full‐wave simulation, adjustable topological rainbow trapping based on coupled interface states is achieved. The designed device can trap wide frequencies exceeding 15 kHz, providing more possibilities for the design of elastic‐energy‐harvesting devices.
Topological rainbow in 1D phononic crystal slabs, achieving adjustable elastic trapping using gradient‐tuned Su–Schrieffer–Heeger structures, is introduced. By varying steel heights, band inversion induces topological phase transitions, forming interface states. A sandwich‐like structure couples these interface states, enabling rainbow trapping frequencies exceeding 15 kHz, outside the common bandgap, expanding design possibilities for energy‐harvesting devices.</description><identifier>ISSN: 1862-6254</identifier><identifier>EISSN: 1862-6270</identifier><identifier>DOI: 10.1002/pssr.202400205</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>coupled interface states ; Crystal structure ; Energy harvesting ; Phase transitions ; plate‐mode waves ; Rainbows ; Resonant frequencies ; Slabs ; topological rainbow trappings ; Topology ; Trapping ; Unit cell</subject><ispartof>Physica status solidi. PSS-RRL. Rapid research letters, 2025-01, Vol.19 (1), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2025 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2025-611fe368a6805aca99e4d02d919d98903bc2f0cd60f44587e90814075ab7e6093</cites><orcidid>0000-0002-1731-9435</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpssr.202400205$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpssr.202400205$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Bu, Xiangzhen</creatorcontrib><creatorcontrib>Huang, Hongbo</creatorcontrib><creatorcontrib>Chen, Jiujiu</creatorcontrib><creatorcontrib>Xie, Xiaoping</creatorcontrib><title>Topological Rainbow Trapping of Plate‐Mode Waves Based on 1D Gradual Phononic Crystal Slabs</title><title>Physica status solidi. PSS-RRL. Rapid research letters</title><description>In this article, the concept of topological rainbow is introduced into the plate‐mode waves system of 1D phononic crystal slabs, achieving adjustable topological elastic rainbow trapping by employing gradient‐tuned Su–Schrieffer–Heeger (SSH) structures. First, based on the classical SSH model, a phononic crystal slab composed of steel and aluminum is set up, and the band structure of plate‐mode waves is studied using the finite‐element method. Band inversion can be induced by changing the height of the steel in the unit cell, leading to topological phase transitions. Then, phononic crystals with different topological properties are connected to form a phononic crystal slab, realizing topological interface states. Furthermore, a sandwich‐like ultrathin structure is constructed to couple the adjacent two topological interface states. Finally, a 1D alternating SSH structure of phononic crystal slab is designed under gradient structural parameters, and based on eigenfrequency and full‐wave simulation, adjustable topological rainbow trapping based on coupled interface states is achieved. The designed device can trap wide frequencies exceeding 15 kHz, providing more possibilities for the design of elastic‐energy‐harvesting devices.
Topological rainbow in 1D phononic crystal slabs, achieving adjustable elastic trapping using gradient‐tuned Su–Schrieffer–Heeger structures, is introduced. By varying steel heights, band inversion induces topological phase transitions, forming interface states. A sandwich‐like structure couples these interface states, enabling rainbow trapping frequencies exceeding 15 kHz, outside the common bandgap, expanding design possibilities for energy‐harvesting devices.</description><subject>coupled interface states</subject><subject>Crystal structure</subject><subject>Energy harvesting</subject><subject>Phase transitions</subject><subject>plate‐mode waves</subject><subject>Rainbows</subject><subject>Resonant frequencies</subject><subject>Slabs</subject><subject>topological rainbow trappings</subject><subject>Topology</subject><subject>Trapping</subject><subject>Unit cell</subject><issn>1862-6254</issn><issn>1862-6270</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkLFOwzAQhi0EEqWwMltiTjk7thOPUGhBKqJqi5iQ5SROSRXiYLdU3XgEnpEnwVVRGZl8Pv3f3elD6JxAjwDQy9Z716NAWfgAP0AdkgoaCZrA4b7m7BideL8A4DJhcQe9zGxrazuvcl3jia6azK7xzOm2rZo5tiUe13ppvj-_Hmxh8LP-MB5fa28KbBtMbvDQ6WIV0PGrbWxT5bjvNn4ZGtNaZ_4UHZW69ubs9-2ip8HtrH8XjR6H9_2rUZSHe3kkCClNLFItUuA611IaVgAtJJGFTCXEWU5LyAsBJWM8TYyElDBIuM4SI0DGXXSxm9s6-74yfqkWduWasFLFhFOISZKKkOrtUrmzwZUpVeuqN-02ioDaKlRbhWqvMAByB6yr2mz-SavxdDr5Y38A8et1GQ</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Bu, Xiangzhen</creator><creator>Huang, Hongbo</creator><creator>Chen, Jiujiu</creator><creator>Xie, Xiaoping</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1731-9435</orcidid></search><sort><creationdate>202501</creationdate><title>Topological Rainbow Trapping of Plate‐Mode Waves Based on 1D Gradual Phononic Crystal Slabs</title><author>Bu, Xiangzhen ; Huang, Hongbo ; Chen, Jiujiu ; Xie, Xiaoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2025-611fe368a6805aca99e4d02d919d98903bc2f0cd60f44587e90814075ab7e6093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>coupled interface states</topic><topic>Crystal structure</topic><topic>Energy harvesting</topic><topic>Phase transitions</topic><topic>plate‐mode waves</topic><topic>Rainbows</topic><topic>Resonant frequencies</topic><topic>Slabs</topic><topic>topological rainbow trappings</topic><topic>Topology</topic><topic>Trapping</topic><topic>Unit cell</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bu, Xiangzhen</creatorcontrib><creatorcontrib>Huang, Hongbo</creatorcontrib><creatorcontrib>Chen, Jiujiu</creatorcontrib><creatorcontrib>Xie, Xiaoping</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bu, Xiangzhen</au><au>Huang, Hongbo</au><au>Chen, Jiujiu</au><au>Xie, Xiaoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Rainbow Trapping of Plate‐Mode Waves Based on 1D Gradual Phononic Crystal Slabs</atitle><jtitle>Physica status solidi. PSS-RRL. Rapid research letters</jtitle><date>2025-01</date><risdate>2025</risdate><volume>19</volume><issue>1</issue><epage>n/a</epage><issn>1862-6254</issn><eissn>1862-6270</eissn><abstract>In this article, the concept of topological rainbow is introduced into the plate‐mode waves system of 1D phononic crystal slabs, achieving adjustable topological elastic rainbow trapping by employing gradient‐tuned Su–Schrieffer–Heeger (SSH) structures. First, based on the classical SSH model, a phononic crystal slab composed of steel and aluminum is set up, and the band structure of plate‐mode waves is studied using the finite‐element method. Band inversion can be induced by changing the height of the steel in the unit cell, leading to topological phase transitions. Then, phononic crystals with different topological properties are connected to form a phononic crystal slab, realizing topological interface states. Furthermore, a sandwich‐like ultrathin structure is constructed to couple the adjacent two topological interface states. Finally, a 1D alternating SSH structure of phononic crystal slab is designed under gradient structural parameters, and based on eigenfrequency and full‐wave simulation, adjustable topological rainbow trapping based on coupled interface states is achieved. The designed device can trap wide frequencies exceeding 15 kHz, providing more possibilities for the design of elastic‐energy‐harvesting devices.
Topological rainbow in 1D phononic crystal slabs, achieving adjustable elastic trapping using gradient‐tuned Su–Schrieffer–Heeger structures, is introduced. By varying steel heights, band inversion induces topological phase transitions, forming interface states. A sandwich‐like structure couples these interface states, enabling rainbow trapping frequencies exceeding 15 kHz, outside the common bandgap, expanding design possibilities for energy‐harvesting devices.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/pssr.202400205</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1731-9435</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6254 |
ispartof | Physica status solidi. PSS-RRL. Rapid research letters, 2025-01, Vol.19 (1), p.n/a |
issn | 1862-6254 1862-6270 |
language | eng |
recordid | cdi_proquest_journals_3152031786 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | coupled interface states Crystal structure Energy harvesting Phase transitions plate‐mode waves Rainbows Resonant frequencies Slabs topological rainbow trappings Topology Trapping Unit cell |
title | Topological Rainbow Trapping of Plate‐Mode Waves Based on 1D Gradual Phononic Crystal Slabs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Rainbow%20Trapping%20of%20Plate%E2%80%90Mode%20Waves%20Based%20on%201D%20Gradual%20Phononic%20Crystal%20Slabs&rft.jtitle=Physica%20status%20solidi.%20PSS-RRL.%20Rapid%20research%20letters&rft.au=Bu,%20Xiangzhen&rft.date=2025-01&rft.volume=19&rft.issue=1&rft.epage=n/a&rft.issn=1862-6254&rft.eissn=1862-6270&rft_id=info:doi/10.1002/pssr.202400205&rft_dat=%3Cproquest_cross%3E3152031786%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3152031786&rft_id=info:pmid/&rfr_iscdi=true |