Photochemical pathways in astronomical ices: A computational study of singlet oxygen reactions with hydrocarbons

Complex organic molecules are widespread in different areas of the interstellar medium, including cold areas, such as molecular clouds, where chemical reactions occur in ice. Among the observed molecules are oxygen-bearing organic molecules, which are of high interest given their significant role in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2025-01, Vol.162 (1)
Hauptverfasser: Daniely, Amit, Zamir, Alon, Eisenberg, Helen R., Livshits, Ester, Piacentino, Elettra, Bergner, Jennifer B., Öberg, Karin I., Stein, Tamar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The Journal of chemical physics
container_volume 162
creator Daniely, Amit
Zamir, Alon
Eisenberg, Helen R.
Livshits, Ester
Piacentino, Elettra
Bergner, Jennifer B.
Öberg, Karin I.
Stein, Tamar
description Complex organic molecules are widespread in different areas of the interstellar medium, including cold areas, such as molecular clouds, where chemical reactions occur in ice. Among the observed molecules are oxygen-bearing organic molecules, which are of high interest given their significant role in astrobiology. Despite the observed rich chemistry, the underlying molecular mechanisms responsible for molecular formation in such cold dilute areas are still not fully understood. In this paper, we study the unique chemistry taking place in astronomically relevant ices, where UV radiation is a central driving force for chemical reactions. Photofragmentation of ice components gives rise to highly reactive species, such as the O(1D) atom. These species provide a pathway for chemical complexity even in cold areas. Using quantum chemistry calculations, we demonstrate that O(1D) reacts barrierlessly with hydrocarbons. Moreover, photoprocessing of the reaction products (and other components of the ice), followed by radical recombination, is found to be an essential part of the overall mechanism. In ice containing O(1D) and hydrocarbons, the formation of formaldehyde in methane ice, acetaldehyde in ethane ice, and carbon monoxide in acetylene ice, and the consumption of alcohol in all systems, was predicted in agreement with experimental results.
doi_str_mv 10.1063/5.0214165
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_3151924614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151880388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c273t-1a63612cd03364f617b63f018f0b33efa68a318ae726bc8077f6637f8a220c183</originalsourceid><addsrcrecordid>eNp90c1q3DAUBWBRGppJmkVfoAi6SQKeXkkeSc4uDPmDQLJI1kbWSGMF23IlmYnfPh487aKLrARHHwfuvQj9ILAkwNnv1RIoyQlffUELArLIBC_gK1rAFGcFB36MTmJ8AwAiaP4NHbNCcKAFXaD-ufbJ69q0TqsG9yrVOzVG7DqsYgq-8_OH0yZe4WusfdsPSSXnuymNadiM2FscXbdtTML-fdyaDgej9J5EvHOpxvW4CV6rUE3Jd3RkVRPN2eE9Ra-3Ny_r--zx6e5hff2YaSpYyojijBOqN8AYzy0nouLMApEWKsaMVVwqRqQygvJKSxDCcs6ElYpS0ESyU3Q-9_bB_xlMTGXrojZNozrjh1gysiJSApN7-us_-uaHMM03q4LmnOSTupiVDj7GYGzZB9eqMJYEyv0ZylV5OMNkfx4ah6o1m3_y794ncDmDqN28zU_aPgAdBY-f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151924614</pqid></control><display><type>article</type><title>Photochemical pathways in astronomical ices: A computational study of singlet oxygen reactions with hydrocarbons</title><source>AIP Journals Complete</source><creator>Daniely, Amit ; Zamir, Alon ; Eisenberg, Helen R. ; Livshits, Ester ; Piacentino, Elettra ; Bergner, Jennifer B. ; Öberg, Karin I. ; Stein, Tamar</creator><creatorcontrib>Daniely, Amit ; Zamir, Alon ; Eisenberg, Helen R. ; Livshits, Ester ; Piacentino, Elettra ; Bergner, Jennifer B. ; Öberg, Karin I. ; Stein, Tamar</creatorcontrib><description>Complex organic molecules are widespread in different areas of the interstellar medium, including cold areas, such as molecular clouds, where chemical reactions occur in ice. Among the observed molecules are oxygen-bearing organic molecules, which are of high interest given their significant role in astrobiology. Despite the observed rich chemistry, the underlying molecular mechanisms responsible for molecular formation in such cold dilute areas are still not fully understood. In this paper, we study the unique chemistry taking place in astronomically relevant ices, where UV radiation is a central driving force for chemical reactions. Photofragmentation of ice components gives rise to highly reactive species, such as the O(1D) atom. These species provide a pathway for chemical complexity even in cold areas. Using quantum chemistry calculations, we demonstrate that O(1D) reacts barrierlessly with hydrocarbons. Moreover, photoprocessing of the reaction products (and other components of the ice), followed by radical recombination, is found to be an essential part of the overall mechanism. In ice containing O(1D) and hydrocarbons, the formation of formaldehyde in methane ice, acetaldehyde in ethane ice, and carbon monoxide in acetylene ice, and the consumption of alcohol in all systems, was predicted in agreement with experimental results.</description><identifier>ISSN: 0021-9606</identifier><identifier>ISSN: 1089-7690</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0214165</identifier><identifier>PMID: 39760292</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Acetaldehyde ; Acetylene ; Astrobiology ; Astrochemistry ; Chemical reactions ; Chemistry ; Complexity ; Ethane ; Hydrocarbons ; Ice formation ; Interstellar chemistry ; Interstellar matter ; Molecular clouds ; Organic chemistry ; Photochemical reactions ; Quantum chemistry ; Reaction products ; Singlet oxygen ; Ultraviolet radiation</subject><ispartof>The Journal of chemical physics, 2025-01, Vol.162 (1)</ispartof><rights>Author(s)</rights><rights>2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c273t-1a63612cd03364f617b63f018f0b33efa68a318ae726bc8077f6637f8a220c183</cites><orcidid>0000-0002-3088-6290 ; 0000-0002-8716-0482 ; 0000-0002-0898-0627 ; 0000-0001-8798-1347 ; 0000-0003-3155-2273 ; 0009-0009-2000-2533 ; 0000-0003-0928-7274 ; 0000-0001-6947-7411</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0214165$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39760292$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Daniely, Amit</creatorcontrib><creatorcontrib>Zamir, Alon</creatorcontrib><creatorcontrib>Eisenberg, Helen R.</creatorcontrib><creatorcontrib>Livshits, Ester</creatorcontrib><creatorcontrib>Piacentino, Elettra</creatorcontrib><creatorcontrib>Bergner, Jennifer B.</creatorcontrib><creatorcontrib>Öberg, Karin I.</creatorcontrib><creatorcontrib>Stein, Tamar</creatorcontrib><title>Photochemical pathways in astronomical ices: A computational study of singlet oxygen reactions with hydrocarbons</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>Complex organic molecules are widespread in different areas of the interstellar medium, including cold areas, such as molecular clouds, where chemical reactions occur in ice. Among the observed molecules are oxygen-bearing organic molecules, which are of high interest given their significant role in astrobiology. Despite the observed rich chemistry, the underlying molecular mechanisms responsible for molecular formation in such cold dilute areas are still not fully understood. In this paper, we study the unique chemistry taking place in astronomically relevant ices, where UV radiation is a central driving force for chemical reactions. Photofragmentation of ice components gives rise to highly reactive species, such as the O(1D) atom. These species provide a pathway for chemical complexity even in cold areas. Using quantum chemistry calculations, we demonstrate that O(1D) reacts barrierlessly with hydrocarbons. Moreover, photoprocessing of the reaction products (and other components of the ice), followed by radical recombination, is found to be an essential part of the overall mechanism. In ice containing O(1D) and hydrocarbons, the formation of formaldehyde in methane ice, acetaldehyde in ethane ice, and carbon monoxide in acetylene ice, and the consumption of alcohol in all systems, was predicted in agreement with experimental results.</description><subject>Acetaldehyde</subject><subject>Acetylene</subject><subject>Astrobiology</subject><subject>Astrochemistry</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Complexity</subject><subject>Ethane</subject><subject>Hydrocarbons</subject><subject>Ice formation</subject><subject>Interstellar chemistry</subject><subject>Interstellar matter</subject><subject>Molecular clouds</subject><subject>Organic chemistry</subject><subject>Photochemical reactions</subject><subject>Quantum chemistry</subject><subject>Reaction products</subject><subject>Singlet oxygen</subject><subject>Ultraviolet radiation</subject><issn>0021-9606</issn><issn>1089-7690</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp90c1q3DAUBWBRGppJmkVfoAi6SQKeXkkeSc4uDPmDQLJI1kbWSGMF23IlmYnfPh487aKLrARHHwfuvQj9ILAkwNnv1RIoyQlffUELArLIBC_gK1rAFGcFB36MTmJ8AwAiaP4NHbNCcKAFXaD-ufbJ69q0TqsG9yrVOzVG7DqsYgq-8_OH0yZe4WusfdsPSSXnuymNadiM2FscXbdtTML-fdyaDgej9J5EvHOpxvW4CV6rUE3Jd3RkVRPN2eE9Ra-3Ny_r--zx6e5hff2YaSpYyojijBOqN8AYzy0nouLMApEWKsaMVVwqRqQygvJKSxDCcs6ElYpS0ESyU3Q-9_bB_xlMTGXrojZNozrjh1gysiJSApN7-us_-uaHMM03q4LmnOSTupiVDj7GYGzZB9eqMJYEyv0ZylV5OMNkfx4ah6o1m3_y794ncDmDqN28zU_aPgAdBY-f</recordid><startdate>20250107</startdate><enddate>20250107</enddate><creator>Daniely, Amit</creator><creator>Zamir, Alon</creator><creator>Eisenberg, Helen R.</creator><creator>Livshits, Ester</creator><creator>Piacentino, Elettra</creator><creator>Bergner, Jennifer B.</creator><creator>Öberg, Karin I.</creator><creator>Stein, Tamar</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3088-6290</orcidid><orcidid>https://orcid.org/0000-0002-8716-0482</orcidid><orcidid>https://orcid.org/0000-0002-0898-0627</orcidid><orcidid>https://orcid.org/0000-0001-8798-1347</orcidid><orcidid>https://orcid.org/0000-0003-3155-2273</orcidid><orcidid>https://orcid.org/0009-0009-2000-2533</orcidid><orcidid>https://orcid.org/0000-0003-0928-7274</orcidid><orcidid>https://orcid.org/0000-0001-6947-7411</orcidid></search><sort><creationdate>20250107</creationdate><title>Photochemical pathways in astronomical ices: A computational study of singlet oxygen reactions with hydrocarbons</title><author>Daniely, Amit ; Zamir, Alon ; Eisenberg, Helen R. ; Livshits, Ester ; Piacentino, Elettra ; Bergner, Jennifer B. ; Öberg, Karin I. ; Stein, Tamar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c273t-1a63612cd03364f617b63f018f0b33efa68a318ae726bc8077f6637f8a220c183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Acetaldehyde</topic><topic>Acetylene</topic><topic>Astrobiology</topic><topic>Astrochemistry</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Complexity</topic><topic>Ethane</topic><topic>Hydrocarbons</topic><topic>Ice formation</topic><topic>Interstellar chemistry</topic><topic>Interstellar matter</topic><topic>Molecular clouds</topic><topic>Organic chemistry</topic><topic>Photochemical reactions</topic><topic>Quantum chemistry</topic><topic>Reaction products</topic><topic>Singlet oxygen</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Daniely, Amit</creatorcontrib><creatorcontrib>Zamir, Alon</creatorcontrib><creatorcontrib>Eisenberg, Helen R.</creatorcontrib><creatorcontrib>Livshits, Ester</creatorcontrib><creatorcontrib>Piacentino, Elettra</creatorcontrib><creatorcontrib>Bergner, Jennifer B.</creatorcontrib><creatorcontrib>Öberg, Karin I.</creatorcontrib><creatorcontrib>Stein, Tamar</creatorcontrib><collection>AIP Open Access Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Daniely, Amit</au><au>Zamir, Alon</au><au>Eisenberg, Helen R.</au><au>Livshits, Ester</au><au>Piacentino, Elettra</au><au>Bergner, Jennifer B.</au><au>Öberg, Karin I.</au><au>Stein, Tamar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photochemical pathways in astronomical ices: A computational study of singlet oxygen reactions with hydrocarbons</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2025-01-07</date><risdate>2025</risdate><volume>162</volume><issue>1</issue><issn>0021-9606</issn><issn>1089-7690</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Complex organic molecules are widespread in different areas of the interstellar medium, including cold areas, such as molecular clouds, where chemical reactions occur in ice. Among the observed molecules are oxygen-bearing organic molecules, which are of high interest given their significant role in astrobiology. Despite the observed rich chemistry, the underlying molecular mechanisms responsible for molecular formation in such cold dilute areas are still not fully understood. In this paper, we study the unique chemistry taking place in astronomically relevant ices, where UV radiation is a central driving force for chemical reactions. Photofragmentation of ice components gives rise to highly reactive species, such as the O(1D) atom. These species provide a pathway for chemical complexity even in cold areas. Using quantum chemistry calculations, we demonstrate that O(1D) reacts barrierlessly with hydrocarbons. Moreover, photoprocessing of the reaction products (and other components of the ice), followed by radical recombination, is found to be an essential part of the overall mechanism. In ice containing O(1D) and hydrocarbons, the formation of formaldehyde in methane ice, acetaldehyde in ethane ice, and carbon monoxide in acetylene ice, and the consumption of alcohol in all systems, was predicted in agreement with experimental results.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>39760292</pmid><doi>10.1063/5.0214165</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-3088-6290</orcidid><orcidid>https://orcid.org/0000-0002-8716-0482</orcidid><orcidid>https://orcid.org/0000-0002-0898-0627</orcidid><orcidid>https://orcid.org/0000-0001-8798-1347</orcidid><orcidid>https://orcid.org/0000-0003-3155-2273</orcidid><orcidid>https://orcid.org/0009-0009-2000-2533</orcidid><orcidid>https://orcid.org/0000-0003-0928-7274</orcidid><orcidid>https://orcid.org/0000-0001-6947-7411</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2025-01, Vol.162 (1)
issn 0021-9606
1089-7690
1089-7690
language eng
recordid cdi_proquest_journals_3151924614
source AIP Journals Complete
subjects Acetaldehyde
Acetylene
Astrobiology
Astrochemistry
Chemical reactions
Chemistry
Complexity
Ethane
Hydrocarbons
Ice formation
Interstellar chemistry
Interstellar matter
Molecular clouds
Organic chemistry
Photochemical reactions
Quantum chemistry
Reaction products
Singlet oxygen
Ultraviolet radiation
title Photochemical pathways in astronomical ices: A computational study of singlet oxygen reactions with hydrocarbons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T10%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photochemical%20pathways%20in%20astronomical%20ices:%20A%20computational%20study%20of%20singlet%20oxygen%20reactions%20with%20hydrocarbons&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Daniely,%20Amit&rft.date=2025-01-07&rft.volume=162&rft.issue=1&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0214165&rft_dat=%3Cproquest_pubme%3E3151880388%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151924614&rft_id=info:pmid/39760292&rfr_iscdi=true