Robust State‐Feedback Controller of Uncertain Systems Based on Non‐Monotonic Approach
ABSTRACT In this article, new linear matrix inequality (LMI) conditions are proposed to guarantee robust stability of the closed‐loop of the linear time‐invariant one‐dimensional uncertain system by dealing with both continuous‐time (CT) and discrete‐time (DT) cases. These improved conditions for ro...
Gespeichert in:
Veröffentlicht in: | International journal of adaptive control and signal processing 2025-01, Vol.39 (1), p.88-100 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 100 |
---|---|
container_issue | 1 |
container_start_page | 88 |
container_title | International journal of adaptive control and signal processing |
container_volume | 39 |
creator | El Fadili, Yattou Boukili, Bensalem N'Diaye, Mouctar Boumhidi, Ismail |
description | ABSTRACT
In this article, new linear matrix inequality (LMI) conditions are proposed to guarantee robust stability of the closed‐loop of the linear time‐invariant one‐dimensional uncertain system by dealing with both continuous‐time (CT) and discrete‐time (DT) cases. These improved conditions for robust state feedback control combine the non‐monotonic approach and Finsler's technique. The benefit of the non‐monotonic approach returns to the utility of an arbitrary number of quadratic functions by considering the higher order derivatives of the vector field in the CT case (or the higher order differences of the vector field in the DT case). Finsler's technique aims to solve the closed‐loop stability problem in a larger parametric space. The strong points of the suggested LMI conditions are easy to program, eliminate the product between the state matrix and Lyapunov matrices, reduce the constraints by avoiding the decrease monotonically along trajectories for each quadratic Lyapunov function, guarantee the robust stability of the closed‐loop by using a state‐feedback gain. The simulation results show and confirm the effectiveness of these proposed conditions. |
doi_str_mv | 10.1002/acs.3922 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3151831555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151831555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1842-597d0eaa44bda90215c1c41e375194bb1930bbbd73c5067e18c798d7308ff0db3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKvgIwS8eNma2Wy6m2NdrApVwdqDp5Bks7h1TWqSIr35CD6jT2JqvXqZYZhv5ocPoVMgIyAkv5A6jCjP8z00AMJ5BgBsHw1IxUk2pnl5iI5CWBKSdkAH6PnRqXWIeB5lNN-fX1NjGiX1K66djd71vfHYtXhhtfFRdhbPNyGat4AvZTANdhbfO5vu7px10dlO48lq5Z3UL8fooJV9MCd_fYgW06un-iabPVzf1pNZpqEq8ozxsiFGyqJQjeQkB6ZBF2BoyYAXSgGnRCnVlFQzMi4NVLrkVRpJ1bakUXSIznZ_U-z72oQolm7tbYoUFBhUqTCWqPMdpb0LwZtWrHz3Jv1GABFbcSKJE1txCc126EfXm82_nJjU81_-B_KWcEg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151831555</pqid></control><display><type>article</type><title>Robust State‐Feedback Controller of Uncertain Systems Based on Non‐Monotonic Approach</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>El Fadili, Yattou ; Boukili, Bensalem ; N'Diaye, Mouctar ; Boumhidi, Ismail</creator><creatorcontrib>El Fadili, Yattou ; Boukili, Bensalem ; N'Diaye, Mouctar ; Boumhidi, Ismail</creatorcontrib><description>ABSTRACT
In this article, new linear matrix inequality (LMI) conditions are proposed to guarantee robust stability of the closed‐loop of the linear time‐invariant one‐dimensional uncertain system by dealing with both continuous‐time (CT) and discrete‐time (DT) cases. These improved conditions for robust state feedback control combine the non‐monotonic approach and Finsler's technique. The benefit of the non‐monotonic approach returns to the utility of an arbitrary number of quadratic functions by considering the higher order derivatives of the vector field in the CT case (or the higher order differences of the vector field in the DT case). Finsler's technique aims to solve the closed‐loop stability problem in a larger parametric space. The strong points of the suggested LMI conditions are easy to program, eliminate the product between the state matrix and Lyapunov matrices, reduce the constraints by avoiding the decrease monotonically along trajectories for each quadratic Lyapunov function, guarantee the robust stability of the closed‐loop by using a state‐feedback gain. The simulation results show and confirm the effectiveness of these proposed conditions.</description><identifier>ISSN: 0890-6327</identifier><identifier>EISSN: 1099-1115</identifier><identifier>DOI: 10.1002/acs.3922</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Control systems ; Feedback control ; Fields (mathematics) ; Liapunov functions ; Linear matrix inequalities ; linear matrix inequality (LMI) ; one‐dimensional linear time‐invariant (1D LTI) systems ; parameter‐dependent Lyapunov functions ; polytopic systems ; Quadratic equations ; Robust control ; Stability ; State feedback ; state‐feedback gain ; uncertain systems</subject><ispartof>International journal of adaptive control and signal processing, 2025-01, Vol.39 (1), p.88-100</ispartof><rights>2024 John Wiley & Sons Ltd.</rights><rights>2025 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1842-597d0eaa44bda90215c1c41e375194bb1930bbbd73c5067e18c798d7308ff0db3</cites><orcidid>0000-0002-3938-1117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Facs.3922$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Facs.3922$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>El Fadili, Yattou</creatorcontrib><creatorcontrib>Boukili, Bensalem</creatorcontrib><creatorcontrib>N'Diaye, Mouctar</creatorcontrib><creatorcontrib>Boumhidi, Ismail</creatorcontrib><title>Robust State‐Feedback Controller of Uncertain Systems Based on Non‐Monotonic Approach</title><title>International journal of adaptive control and signal processing</title><description>ABSTRACT
In this article, new linear matrix inequality (LMI) conditions are proposed to guarantee robust stability of the closed‐loop of the linear time‐invariant one‐dimensional uncertain system by dealing with both continuous‐time (CT) and discrete‐time (DT) cases. These improved conditions for robust state feedback control combine the non‐monotonic approach and Finsler's technique. The benefit of the non‐monotonic approach returns to the utility of an arbitrary number of quadratic functions by considering the higher order derivatives of the vector field in the CT case (or the higher order differences of the vector field in the DT case). Finsler's technique aims to solve the closed‐loop stability problem in a larger parametric space. The strong points of the suggested LMI conditions are easy to program, eliminate the product between the state matrix and Lyapunov matrices, reduce the constraints by avoiding the decrease monotonically along trajectories for each quadratic Lyapunov function, guarantee the robust stability of the closed‐loop by using a state‐feedback gain. The simulation results show and confirm the effectiveness of these proposed conditions.</description><subject>Control systems</subject><subject>Feedback control</subject><subject>Fields (mathematics)</subject><subject>Liapunov functions</subject><subject>Linear matrix inequalities</subject><subject>linear matrix inequality (LMI)</subject><subject>one‐dimensional linear time‐invariant (1D LTI) systems</subject><subject>parameter‐dependent Lyapunov functions</subject><subject>polytopic systems</subject><subject>Quadratic equations</subject><subject>Robust control</subject><subject>Stability</subject><subject>State feedback</subject><subject>state‐feedback gain</subject><subject>uncertain systems</subject><issn>0890-6327</issn><issn>1099-1115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKvgIwS8eNma2Wy6m2NdrApVwdqDp5Bks7h1TWqSIr35CD6jT2JqvXqZYZhv5ocPoVMgIyAkv5A6jCjP8z00AMJ5BgBsHw1IxUk2pnl5iI5CWBKSdkAH6PnRqXWIeB5lNN-fX1NjGiX1K66djd71vfHYtXhhtfFRdhbPNyGat4AvZTANdhbfO5vu7px10dlO48lq5Z3UL8fooJV9MCd_fYgW06un-iabPVzf1pNZpqEq8ozxsiFGyqJQjeQkB6ZBF2BoyYAXSgGnRCnVlFQzMi4NVLrkVRpJ1bakUXSIznZ_U-z72oQolm7tbYoUFBhUqTCWqPMdpb0LwZtWrHz3Jv1GABFbcSKJE1txCc126EfXm82_nJjU81_-B_KWcEg</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>El Fadili, Yattou</creator><creator>Boukili, Bensalem</creator><creator>N'Diaye, Mouctar</creator><creator>Boumhidi, Ismail</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3938-1117</orcidid></search><sort><creationdate>202501</creationdate><title>Robust State‐Feedback Controller of Uncertain Systems Based on Non‐Monotonic Approach</title><author>El Fadili, Yattou ; Boukili, Bensalem ; N'Diaye, Mouctar ; Boumhidi, Ismail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1842-597d0eaa44bda90215c1c41e375194bb1930bbbd73c5067e18c798d7308ff0db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Control systems</topic><topic>Feedback control</topic><topic>Fields (mathematics)</topic><topic>Liapunov functions</topic><topic>Linear matrix inequalities</topic><topic>linear matrix inequality (LMI)</topic><topic>one‐dimensional linear time‐invariant (1D LTI) systems</topic><topic>parameter‐dependent Lyapunov functions</topic><topic>polytopic systems</topic><topic>Quadratic equations</topic><topic>Robust control</topic><topic>Stability</topic><topic>State feedback</topic><topic>state‐feedback gain</topic><topic>uncertain systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Fadili, Yattou</creatorcontrib><creatorcontrib>Boukili, Bensalem</creatorcontrib><creatorcontrib>N'Diaye, Mouctar</creatorcontrib><creatorcontrib>Boumhidi, Ismail</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of adaptive control and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Fadili, Yattou</au><au>Boukili, Bensalem</au><au>N'Diaye, Mouctar</au><au>Boumhidi, Ismail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust State‐Feedback Controller of Uncertain Systems Based on Non‐Monotonic Approach</atitle><jtitle>International journal of adaptive control and signal processing</jtitle><date>2025-01</date><risdate>2025</risdate><volume>39</volume><issue>1</issue><spage>88</spage><epage>100</epage><pages>88-100</pages><issn>0890-6327</issn><eissn>1099-1115</eissn><abstract>ABSTRACT
In this article, new linear matrix inequality (LMI) conditions are proposed to guarantee robust stability of the closed‐loop of the linear time‐invariant one‐dimensional uncertain system by dealing with both continuous‐time (CT) and discrete‐time (DT) cases. These improved conditions for robust state feedback control combine the non‐monotonic approach and Finsler's technique. The benefit of the non‐monotonic approach returns to the utility of an arbitrary number of quadratic functions by considering the higher order derivatives of the vector field in the CT case (or the higher order differences of the vector field in the DT case). Finsler's technique aims to solve the closed‐loop stability problem in a larger parametric space. The strong points of the suggested LMI conditions are easy to program, eliminate the product between the state matrix and Lyapunov matrices, reduce the constraints by avoiding the decrease monotonically along trajectories for each quadratic Lyapunov function, guarantee the robust stability of the closed‐loop by using a state‐feedback gain. The simulation results show and confirm the effectiveness of these proposed conditions.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/acs.3922</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3938-1117</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-6327 |
ispartof | International journal of adaptive control and signal processing, 2025-01, Vol.39 (1), p.88-100 |
issn | 0890-6327 1099-1115 |
language | eng |
recordid | cdi_proquest_journals_3151831555 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Control systems Feedback control Fields (mathematics) Liapunov functions Linear matrix inequalities linear matrix inequality (LMI) one‐dimensional linear time‐invariant (1D LTI) systems parameter‐dependent Lyapunov functions polytopic systems Quadratic equations Robust control Stability State feedback state‐feedback gain uncertain systems |
title | Robust State‐Feedback Controller of Uncertain Systems Based on Non‐Monotonic Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T12%3A20%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20State%E2%80%90Feedback%20Controller%20of%20Uncertain%20Systems%20Based%20on%20Non%E2%80%90Monotonic%20Approach&rft.jtitle=International%20journal%20of%20adaptive%20control%20and%20signal%20processing&rft.au=El%20Fadili,%20Yattou&rft.date=2025-01&rft.volume=39&rft.issue=1&rft.spage=88&rft.epage=100&rft.pages=88-100&rft.issn=0890-6327&rft.eissn=1099-1115&rft_id=info:doi/10.1002/acs.3922&rft_dat=%3Cproquest_cross%3E3151831555%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151831555&rft_id=info:pmid/&rfr_iscdi=true |