Approximation processes by multidimensional Bernstein-type exponential polynomials on the hypercube
In this paper we introduce a new family of Bernstein-type exponential polynomials on the hypercube [0,1]d and study their approximation properties. Such operators fix a multidimensional version of the exponential function and its square. In particular, we prove uniform convergence, by means of two d...
Gespeichert in:
Veröffentlicht in: | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2025-01, Vol.119 (1), Article 28 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas |
container_volume | 119 |
creator | Angeloni, Laura Costarelli, Danilo Darielli, Chiara |
description | In this paper we introduce a new family of Bernstein-type exponential polynomials on the hypercube [0,1]d and study their approximation properties. Such operators fix a multidimensional version of the exponential function and its square. In particular, we prove uniform convergence, by means of two different approaches, as well as a quantitative estimate of the order of approximation in terms of the modulus of continuity of the approximated function. |
doi_str_mv | 10.1007/s13398-024-01693-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3151427127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151427127</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-33419d64614eb45923f45c2ac9338bd4a512ebe093b623f7ba72a983848c60a83</originalsourceid><addsrcrecordid>eNotUMtqwzAQFKWFhjQ_0JOgZ7WSVrakYxr6gkAv7VnYyoY4xI9KMth_XzXpXnbYGYadIeRe8EfBuX6KAsAaxqViXJQW2HRFFqLQlomCF9dnbJgGDrdkFeOR5wGhDNcL4tfDEPqpaavU9B3N2GOMGGk903Y8pWbXtNjFzFUn-oyhiwmbjqV5QIrT0HfYpSZTQ3-au77NMNLskw5ID1kT_FjjHbnZ5zuu_veSfL--fG3e2fbz7WOz3jIvOU8MQAm7K1UpFNaqsBL2qvCy8hbA1DtVFUJijdxCXWZO15WWlTVglPElrwwsycPFN6f4GTEmd-zHkB-PDkQhlNRC6qySF5UPfYwB924IOX6YneDur0936dPlPt25TzfBLz21alc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151427127</pqid></control><display><type>article</type><title>Approximation processes by multidimensional Bernstein-type exponential polynomials on the hypercube</title><source>SpringerLink Journals - AutoHoldings</source><creator>Angeloni, Laura ; Costarelli, Danilo ; Darielli, Chiara</creator><creatorcontrib>Angeloni, Laura ; Costarelli, Danilo ; Darielli, Chiara</creatorcontrib><description>In this paper we introduce a new family of Bernstein-type exponential polynomials on the hypercube [0,1]d and study their approximation properties. Such operators fix a multidimensional version of the exponential function and its square. In particular, we prove uniform convergence, by means of two different approaches, as well as a quantitative estimate of the order of approximation in terms of the modulus of continuity of the approximated function.</description><identifier>ISSN: 1578-7303</identifier><identifier>EISSN: 1579-1505</identifier><identifier>DOI: 10.1007/s13398-024-01693-x</identifier><language>eng</language><publisher>Milan: Springer Nature B.V</publisher><subject>Approximation ; Convergence ; Exponential functions ; Hypercubes ; Operators (mathematics) ; Polynomials</subject><ispartof>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2025-01, Vol.119 (1), Article 28</ispartof><rights>Copyright Springer Nature B.V. 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-33419d64614eb45923f45c2ac9338bd4a512ebe093b623f7ba72a983848c60a83</cites><orcidid>0000-0002-2214-6751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Angeloni, Laura</creatorcontrib><creatorcontrib>Costarelli, Danilo</creatorcontrib><creatorcontrib>Darielli, Chiara</creatorcontrib><title>Approximation processes by multidimensional Bernstein-type exponential polynomials on the hypercube</title><title>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</title><description>In this paper we introduce a new family of Bernstein-type exponential polynomials on the hypercube [0,1]d and study their approximation properties. Such operators fix a multidimensional version of the exponential function and its square. In particular, we prove uniform convergence, by means of two different approaches, as well as a quantitative estimate of the order of approximation in terms of the modulus of continuity of the approximated function.</description><subject>Approximation</subject><subject>Convergence</subject><subject>Exponential functions</subject><subject>Hypercubes</subject><subject>Operators (mathematics)</subject><subject>Polynomials</subject><issn>1578-7303</issn><issn>1579-1505</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNotUMtqwzAQFKWFhjQ_0JOgZ7WSVrakYxr6gkAv7VnYyoY4xI9KMth_XzXpXnbYGYadIeRe8EfBuX6KAsAaxqViXJQW2HRFFqLQlomCF9dnbJgGDrdkFeOR5wGhDNcL4tfDEPqpaavU9B3N2GOMGGk903Y8pWbXtNjFzFUn-oyhiwmbjqV5QIrT0HfYpSZTQ3-au77NMNLskw5ID1kT_FjjHbnZ5zuu_veSfL--fG3e2fbz7WOz3jIvOU8MQAm7K1UpFNaqsBL2qvCy8hbA1DtVFUJijdxCXWZO15WWlTVglPElrwwsycPFN6f4GTEmd-zHkB-PDkQhlNRC6qySF5UPfYwB924IOX6YneDur0936dPlPt25TzfBLz21alc</recordid><startdate>202501</startdate><enddate>202501</enddate><creator>Angeloni, Laura</creator><creator>Costarelli, Danilo</creator><creator>Darielli, Chiara</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-2214-6751</orcidid></search><sort><creationdate>202501</creationdate><title>Approximation processes by multidimensional Bernstein-type exponential polynomials on the hypercube</title><author>Angeloni, Laura ; Costarelli, Danilo ; Darielli, Chiara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-33419d64614eb45923f45c2ac9338bd4a512ebe093b623f7ba72a983848c60a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Approximation</topic><topic>Convergence</topic><topic>Exponential functions</topic><topic>Hypercubes</topic><topic>Operators (mathematics)</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Angeloni, Laura</creatorcontrib><creatorcontrib>Costarelli, Danilo</creatorcontrib><creatorcontrib>Darielli, Chiara</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Angeloni, Laura</au><au>Costarelli, Danilo</au><au>Darielli, Chiara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximation processes by multidimensional Bernstein-type exponential polynomials on the hypercube</atitle><jtitle>Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas</jtitle><date>2025-01</date><risdate>2025</risdate><volume>119</volume><issue>1</issue><artnum>28</artnum><issn>1578-7303</issn><eissn>1579-1505</eissn><abstract>In this paper we introduce a new family of Bernstein-type exponential polynomials on the hypercube [0,1]d and study their approximation properties. Such operators fix a multidimensional version of the exponential function and its square. In particular, we prove uniform convergence, by means of two different approaches, as well as a quantitative estimate of the order of approximation in terms of the modulus of continuity of the approximated function.</abstract><cop>Milan</cop><pub>Springer Nature B.V</pub><doi>10.1007/s13398-024-01693-x</doi><orcidid>https://orcid.org/0000-0002-2214-6751</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1578-7303 |
ispartof | Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas, 2025-01, Vol.119 (1), Article 28 |
issn | 1578-7303 1579-1505 |
language | eng |
recordid | cdi_proquest_journals_3151427127 |
source | SpringerLink Journals - AutoHoldings |
subjects | Approximation Convergence Exponential functions Hypercubes Operators (mathematics) Polynomials |
title | Approximation processes by multidimensional Bernstein-type exponential polynomials on the hypercube |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximation%20processes%20by%20multidimensional%20Bernstein-type%20exponential%20polynomials%20on%20the%20hypercube&rft.jtitle=Revista%20de%20la%20Real%20Academia%20de%20Ciencias%20Exactas,%20F%C3%ADsicas%20y%20Naturales.%20Serie%20A,%20Matem%C3%A1ticas&rft.au=Angeloni,%20Laura&rft.date=2025-01&rft.volume=119&rft.issue=1&rft.artnum=28&rft.issn=1578-7303&rft.eissn=1579-1505&rft_id=info:doi/10.1007/s13398-024-01693-x&rft_dat=%3Cproquest_cross%3E3151427127%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151427127&rft_id=info:pmid/&rfr_iscdi=true |