Gate controllable fully spin-polarized and pure spin current in γ-graphyne nanoribbons
Gate-controlled spin-dependent transport has paved the way for spintronic devices with tunable functionalities. In this study, we calculated the spin-dependent transport properties and photocurrent characteristics of a two-probe device based on a zigzag γ-graphyne nanoribbon (γ-GYNR), controlled by...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. C, Materials for optical and electronic devices Materials for optical and electronic devices, 2025-01, Vol.13 (2), p.884-891 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 891 |
---|---|
container_issue | 2 |
container_start_page | 884 |
container_title | Journal of materials chemistry. C, Materials for optical and electronic devices |
container_volume | 13 |
creator | Zhang, Liwen Hao, Yanjing Yang, Yaqing Chen, Jun Zhang, Lei |
description | Gate-controlled spin-dependent transport has paved the way for spintronic devices with tunable functionalities. In this study, we calculated the spin-dependent transport properties and photocurrent characteristics of a two-probe device based on a zigzag γ-graphyne nanoribbon (γ-GYNR), controlled by gate voltage. We found that adjusting the gate voltage polarity effectively regulated the conduction and blocking of electrons with different spin components. When the gate voltage applied to both leads is positive, a fully spin-polarized current is generated. Furthermore, we observed that a pure spin current and a fully spin-polarized photocurrent could be generated based on the photogalvanic effect. This was explained via the system's symmetry analysis. Our findings indicate an expanded application potential for the zigzag γ-GYNR in generating highly spin-polarized currents. The results highlight not only the unique spin-dependent transport and photocurrent properties of the zigzag γ-GYNR but also its potential for gate-controlled tuning. This research provides a theoretical basis for developing novel γ-GYNR-based spintronic devices, potentially leading to breakthroughs in information storage, quantum computing, and other technologies. |
doi_str_mv | 10.1039/D4TC03876B |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3151123007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151123007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c148t-adf6f598a6746e4499ac95b5d6b40a78245398d373d0635ee7a37c2f9aa213a3</originalsourceid><addsrcrecordid>eNpFUM1KxDAYDKLgsu7FJwh4E6pJ83_UVVdhwUvBY_naptolJjVpD_W1fA-fyeqKzmWGYZiBQeiUkgtKmLm84cWaMK3k9QFa5ESQTAnGD_90Lo_RKqUdmaGp1NIs0NMGBovr4IcYnIPKWdyOzk049Z3P-uAgdu-2weAb3I_R_vi4HmO0fsCz_PzIniP0L5O32IMPsauq4NMJOmrBJbv65SUq7m6L9X22fdw8rK-2WU25HjJoWtkKo0EqLi3nxkBtRCUaWXECSudcMKMbplhDJBPWKmCqzlsDkFMGbInO9rV9DG-jTUO5C2P082LJqKA0Z4SoOXW-T9UxpBRtW_axe4U4lZSU39eV_9exL0uIYXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151123007</pqid></control><display><type>article</type><title>Gate controllable fully spin-polarized and pure spin current in γ-graphyne nanoribbons</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Zhang, Liwen ; Hao, Yanjing ; Yang, Yaqing ; Chen, Jun ; Zhang, Lei</creator><creatorcontrib>Zhang, Liwen ; Hao, Yanjing ; Yang, Yaqing ; Chen, Jun ; Zhang, Lei</creatorcontrib><description>Gate-controlled spin-dependent transport has paved the way for spintronic devices with tunable functionalities. In this study, we calculated the spin-dependent transport properties and photocurrent characteristics of a two-probe device based on a zigzag γ-graphyne nanoribbon (γ-GYNR), controlled by gate voltage. We found that adjusting the gate voltage polarity effectively regulated the conduction and blocking of electrons with different spin components. When the gate voltage applied to both leads is positive, a fully spin-polarized current is generated. Furthermore, we observed that a pure spin current and a fully spin-polarized photocurrent could be generated based on the photogalvanic effect. This was explained via the system's symmetry analysis. Our findings indicate an expanded application potential for the zigzag γ-GYNR in generating highly spin-polarized currents. The results highlight not only the unique spin-dependent transport and photocurrent properties of the zigzag γ-GYNR but also its potential for gate-controlled tuning. This research provides a theoretical basis for developing novel γ-GYNR-based spintronic devices, potentially leading to breakthroughs in information storage, quantum computing, and other technologies.</description><identifier>ISSN: 2050-7526</identifier><identifier>EISSN: 2050-7534</identifier><identifier>DOI: 10.1039/D4TC03876B</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Controllability ; Electric currents ; Electric potential ; Electron spin ; Information storage ; Nanoribbons ; Photoelectric effect ; Photoelectric emission ; Quantum computing ; Spintronics ; Transport properties ; Voltage</subject><ispartof>Journal of materials chemistry. C, Materials for optical and electronic devices, 2025-01, Vol.13 (2), p.884-891</ispartof><rights>Copyright Royal Society of Chemistry 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c148t-adf6f598a6746e4499ac95b5d6b40a78245398d373d0635ee7a37c2f9aa213a3</cites><orcidid>0000-0001-6111-1642 ; 0000-0002-8634-8037</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhang, Liwen</creatorcontrib><creatorcontrib>Hao, Yanjing</creatorcontrib><creatorcontrib>Yang, Yaqing</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><title>Gate controllable fully spin-polarized and pure spin current in γ-graphyne nanoribbons</title><title>Journal of materials chemistry. C, Materials for optical and electronic devices</title><description>Gate-controlled spin-dependent transport has paved the way for spintronic devices with tunable functionalities. In this study, we calculated the spin-dependent transport properties and photocurrent characteristics of a two-probe device based on a zigzag γ-graphyne nanoribbon (γ-GYNR), controlled by gate voltage. We found that adjusting the gate voltage polarity effectively regulated the conduction and blocking of electrons with different spin components. When the gate voltage applied to both leads is positive, a fully spin-polarized current is generated. Furthermore, we observed that a pure spin current and a fully spin-polarized photocurrent could be generated based on the photogalvanic effect. This was explained via the system's symmetry analysis. Our findings indicate an expanded application potential for the zigzag γ-GYNR in generating highly spin-polarized currents. The results highlight not only the unique spin-dependent transport and photocurrent properties of the zigzag γ-GYNR but also its potential for gate-controlled tuning. This research provides a theoretical basis for developing novel γ-GYNR-based spintronic devices, potentially leading to breakthroughs in information storage, quantum computing, and other technologies.</description><subject>Controllability</subject><subject>Electric currents</subject><subject>Electric potential</subject><subject>Electron spin</subject><subject>Information storage</subject><subject>Nanoribbons</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Quantum computing</subject><subject>Spintronics</subject><subject>Transport properties</subject><subject>Voltage</subject><issn>2050-7526</issn><issn>2050-7534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNpFUM1KxDAYDKLgsu7FJwh4E6pJ83_UVVdhwUvBY_naptolJjVpD_W1fA-fyeqKzmWGYZiBQeiUkgtKmLm84cWaMK3k9QFa5ESQTAnGD_90Lo_RKqUdmaGp1NIs0NMGBovr4IcYnIPKWdyOzk049Z3P-uAgdu-2weAb3I_R_vi4HmO0fsCz_PzIniP0L5O32IMPsauq4NMJOmrBJbv65SUq7m6L9X22fdw8rK-2WU25HjJoWtkKo0EqLi3nxkBtRCUaWXECSudcMKMbplhDJBPWKmCqzlsDkFMGbInO9rV9DG-jTUO5C2P082LJqKA0Z4SoOXW-T9UxpBRtW_axe4U4lZSU39eV_9exL0uIYXA</recordid><startdate>20250103</startdate><enddate>20250103</enddate><creator>Zhang, Liwen</creator><creator>Hao, Yanjing</creator><creator>Yang, Yaqing</creator><creator>Chen, Jun</creator><creator>Zhang, Lei</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6111-1642</orcidid><orcidid>https://orcid.org/0000-0002-8634-8037</orcidid></search><sort><creationdate>20250103</creationdate><title>Gate controllable fully spin-polarized and pure spin current in γ-graphyne nanoribbons</title><author>Zhang, Liwen ; Hao, Yanjing ; Yang, Yaqing ; Chen, Jun ; Zhang, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c148t-adf6f598a6746e4499ac95b5d6b40a78245398d373d0635ee7a37c2f9aa213a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Controllability</topic><topic>Electric currents</topic><topic>Electric potential</topic><topic>Electron spin</topic><topic>Information storage</topic><topic>Nanoribbons</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Quantum computing</topic><topic>Spintronics</topic><topic>Transport properties</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Liwen</creatorcontrib><creatorcontrib>Hao, Yanjing</creatorcontrib><creatorcontrib>Yang, Yaqing</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Liwen</au><au>Hao, Yanjing</au><au>Yang, Yaqing</au><au>Chen, Jun</au><au>Zhang, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gate controllable fully spin-polarized and pure spin current in γ-graphyne nanoribbons</atitle><jtitle>Journal of materials chemistry. C, Materials for optical and electronic devices</jtitle><date>2025-01-03</date><risdate>2025</risdate><volume>13</volume><issue>2</issue><spage>884</spage><epage>891</epage><pages>884-891</pages><issn>2050-7526</issn><eissn>2050-7534</eissn><abstract>Gate-controlled spin-dependent transport has paved the way for spintronic devices with tunable functionalities. In this study, we calculated the spin-dependent transport properties and photocurrent characteristics of a two-probe device based on a zigzag γ-graphyne nanoribbon (γ-GYNR), controlled by gate voltage. We found that adjusting the gate voltage polarity effectively regulated the conduction and blocking of electrons with different spin components. When the gate voltage applied to both leads is positive, a fully spin-polarized current is generated. Furthermore, we observed that a pure spin current and a fully spin-polarized photocurrent could be generated based on the photogalvanic effect. This was explained via the system's symmetry analysis. Our findings indicate an expanded application potential for the zigzag γ-GYNR in generating highly spin-polarized currents. The results highlight not only the unique spin-dependent transport and photocurrent properties of the zigzag γ-GYNR but also its potential for gate-controlled tuning. This research provides a theoretical basis for developing novel γ-GYNR-based spintronic devices, potentially leading to breakthroughs in information storage, quantum computing, and other technologies.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/D4TC03876B</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6111-1642</orcidid><orcidid>https://orcid.org/0000-0002-8634-8037</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-7526 |
ispartof | Journal of materials chemistry. C, Materials for optical and electronic devices, 2025-01, Vol.13 (2), p.884-891 |
issn | 2050-7526 2050-7534 |
language | eng |
recordid | cdi_proquest_journals_3151123007 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Controllability Electric currents Electric potential Electron spin Information storage Nanoribbons Photoelectric effect Photoelectric emission Quantum computing Spintronics Transport properties Voltage |
title | Gate controllable fully spin-polarized and pure spin current in γ-graphyne nanoribbons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gate%20controllable%20fully%20spin-polarized%20and%20pure%20spin%20current%20in%20%CE%B3-graphyne%20nanoribbons&rft.jtitle=Journal%20of%20materials%20chemistry.%20C,%20Materials%20for%20optical%20and%20electronic%20devices&rft.au=Zhang,%20Liwen&rft.date=2025-01-03&rft.volume=13&rft.issue=2&rft.spage=884&rft.epage=891&rft.pages=884-891&rft.issn=2050-7526&rft.eissn=2050-7534&rft_id=info:doi/10.1039/D4TC03876B&rft_dat=%3Cproquest_cross%3E3151123007%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151123007&rft_id=info:pmid/&rfr_iscdi=true |