Oxygen vacancies enriched Ir/WOx catalysts for the directly chem-catalytic conversion of cellulose to ethanol

Tungsten and its oxides are highly versatile catalysts with unique properties that hold great promise for a wide array of applications, including biological pathways and chemical processes. The chemo-catalysis of cellulose to ethanol presents a promising avenue for ethanol synthesis with the potenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tungsten 2025-03, Vol.7 (1), p.88-99
Hauptverfasser: Weng, Yu-Jing, Ding, Zhao-Ying, Li, Ying-Chao, Wu, Yuan-Feng, Xu, Yuan-Yang, Chen, Rui, Zhao, Xiao-Lei, Wang, Hai-Yong, Zhang, Da-Lei, Zhang, Yu-Long
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue 1
container_start_page 88
container_title Tungsten
container_volume 7
creator Weng, Yu-Jing
Ding, Zhao-Ying
Li, Ying-Chao
Wu, Yuan-Feng
Xu, Yuan-Yang
Chen, Rui
Zhao, Xiao-Lei
Wang, Hai-Yong
Zhang, Da-Lei
Zhang, Yu-Long
description Tungsten and its oxides are highly versatile catalysts with unique properties that hold great promise for a wide array of applications, including biological pathways and chemical processes. The chemo-catalysis of cellulose to ethanol presents a promising avenue for ethanol synthesis with the potential for enhanced efficiency compared to conventional methods, offering a sustainable and carbon–neutral alternative to existing petrochemical and biological processes. Herein, Ir/WO x catalysts enriched with oxygen vacancies were meticulously prepared and demonstrated remarkable catalytic performance in converting cellulose to ethanol directly in the presence of tungstic acid. The catalyst achieved a high ethanol yield of 66.5% under optimal reaction conditions, approaching the theoretical yield limit of traditional ethanol fermentation. Characterization results revealed the presence of oxygen defects, Bronsted/Lewis acidity, and Ir nanoclusters on the catalyst surface, working synergistically to facilitate the cascade catalysis of cellulose hydrolysis, sugar retro-aldol condensation reaction, and C2 intermediate hydrodeoxygenation to ethanol. In situ Fourier transform infrared spectrometer analysis confirmed the catalyst's ability to enhance the adsorption and activation of ethylene glycol for ethanol production. By manipulating subtle structural features, this study offers a fresh perspective on tungsten group catalyst design and underscores the importance of synergistic effects among catalytic sites for the efficient production of ethanol from cellulose.
doi_str_mv 10.1007/s42864-024-00293-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3151021681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3151021681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-3b43fe2d6328a484efe04e86017c740a4f0845765f9eefb6eef7e9a502de11bb3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUhosoOOb-gFcBr-tO0jRtL2X4MRjsRvEypOnJ1tE1M8lG9--NVvTOi_MB53nfA2-S3FK4pwDF3HNWCp4CiwWsytLhIpkwIWhaQiYuf3dWXicz73cQqbwCyopJsl8P5w325KS06nWLnmDvWr3Fhizd_H09EK2C6s4-eGKsI2GLpGkd6tCdScT26XgPrSba9id0vrU9sYZo7LpjZz2SYAmGreptd5NcGdV5nP3MafL29Pi6eElX6-fl4mGVagYQ0qzmmUHWiIyVipccDQLHUgAtdMFBcQMlzwuRmwrR1CK2AiuVA2uQ0rrOpsnd6Htw9uOIPsidPbo-vpQZzSkwKkoaKTZS2lnvHRp5cO1eubOkIL-SlWOyMiYrv5OVQxRlo8hHuN-g-7P-R_UJC6R92A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3151021681</pqid></control><display><type>article</type><title>Oxygen vacancies enriched Ir/WOx catalysts for the directly chem-catalytic conversion of cellulose to ethanol</title><source>Springer Nature - Complete Springer Journals</source><creator>Weng, Yu-Jing ; Ding, Zhao-Ying ; Li, Ying-Chao ; Wu, Yuan-Feng ; Xu, Yuan-Yang ; Chen, Rui ; Zhao, Xiao-Lei ; Wang, Hai-Yong ; Zhang, Da-Lei ; Zhang, Yu-Long</creator><creatorcontrib>Weng, Yu-Jing ; Ding, Zhao-Ying ; Li, Ying-Chao ; Wu, Yuan-Feng ; Xu, Yuan-Yang ; Chen, Rui ; Zhao, Xiao-Lei ; Wang, Hai-Yong ; Zhang, Da-Lei ; Zhang, Yu-Long</creatorcontrib><description>Tungsten and its oxides are highly versatile catalysts with unique properties that hold great promise for a wide array of applications, including biological pathways and chemical processes. The chemo-catalysis of cellulose to ethanol presents a promising avenue for ethanol synthesis with the potential for enhanced efficiency compared to conventional methods, offering a sustainable and carbon–neutral alternative to existing petrochemical and biological processes. Herein, Ir/WO x catalysts enriched with oxygen vacancies were meticulously prepared and demonstrated remarkable catalytic performance in converting cellulose to ethanol directly in the presence of tungstic acid. The catalyst achieved a high ethanol yield of 66.5% under optimal reaction conditions, approaching the theoretical yield limit of traditional ethanol fermentation. Characterization results revealed the presence of oxygen defects, Bronsted/Lewis acidity, and Ir nanoclusters on the catalyst surface, working synergistically to facilitate the cascade catalysis of cellulose hydrolysis, sugar retro-aldol condensation reaction, and C2 intermediate hydrodeoxygenation to ethanol. In situ Fourier transform infrared spectrometer analysis confirmed the catalyst's ability to enhance the adsorption and activation of ethylene glycol for ethanol production. By manipulating subtle structural features, this study offers a fresh perspective on tungsten group catalyst design and underscores the importance of synergistic effects among catalytic sites for the efficient production of ethanol from cellulose.</description><identifier>ISSN: 2661-8028</identifier><identifier>EISSN: 2661-8036</identifier><identifier>DOI: 10.1007/s42864-024-00293-x</identifier><language>eng</language><publisher>Singapore: Springer Nature Singapore</publisher><subject>Acids ; Aldehydes ; Aqueous solutions ; Biological activity ; Biological properties ; Biomass ; Carbohydrates ; Carbon ; Catalysis ; Catalysts ; Catalytic converters ; Cellulose ; Chemical reactions ; Chemical synthesis ; Chemistry and Materials Science ; Chromatography ; Condensates ; Ethanol ; Ethylene glycol ; Fourier transforms ; FTIR spectrometers ; Gas flow ; Glucose ; Hydrogenation ; Infrared analysis ; Infrared spectrometers ; Materials Engineering ; Materials Science ; Metallic Materials ; Nanoclusters ; Nuclear Chemistry ; Original Paper ; Oxygen enrichment ; Particle and Nuclear Physics ; Sodium ; Spectrum analysis ; Synergistic effect ; Tungsten</subject><ispartof>Tungsten, 2025-03, Vol.7 (1), p.88-99</ispartof><rights>Youke Publishing Co., Ltd 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Mar 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-3b43fe2d6328a484efe04e86017c740a4f0845765f9eefb6eef7e9a502de11bb3</cites><orcidid>0000-0003-1459-2054</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s42864-024-00293-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s42864-024-00293-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Weng, Yu-Jing</creatorcontrib><creatorcontrib>Ding, Zhao-Ying</creatorcontrib><creatorcontrib>Li, Ying-Chao</creatorcontrib><creatorcontrib>Wu, Yuan-Feng</creatorcontrib><creatorcontrib>Xu, Yuan-Yang</creatorcontrib><creatorcontrib>Chen, Rui</creatorcontrib><creatorcontrib>Zhao, Xiao-Lei</creatorcontrib><creatorcontrib>Wang, Hai-Yong</creatorcontrib><creatorcontrib>Zhang, Da-Lei</creatorcontrib><creatorcontrib>Zhang, Yu-Long</creatorcontrib><title>Oxygen vacancies enriched Ir/WOx catalysts for the directly chem-catalytic conversion of cellulose to ethanol</title><title>Tungsten</title><addtitle>Tungsten</addtitle><description>Tungsten and its oxides are highly versatile catalysts with unique properties that hold great promise for a wide array of applications, including biological pathways and chemical processes. The chemo-catalysis of cellulose to ethanol presents a promising avenue for ethanol synthesis with the potential for enhanced efficiency compared to conventional methods, offering a sustainable and carbon–neutral alternative to existing petrochemical and biological processes. Herein, Ir/WO x catalysts enriched with oxygen vacancies were meticulously prepared and demonstrated remarkable catalytic performance in converting cellulose to ethanol directly in the presence of tungstic acid. The catalyst achieved a high ethanol yield of 66.5% under optimal reaction conditions, approaching the theoretical yield limit of traditional ethanol fermentation. Characterization results revealed the presence of oxygen defects, Bronsted/Lewis acidity, and Ir nanoclusters on the catalyst surface, working synergistically to facilitate the cascade catalysis of cellulose hydrolysis, sugar retro-aldol condensation reaction, and C2 intermediate hydrodeoxygenation to ethanol. In situ Fourier transform infrared spectrometer analysis confirmed the catalyst's ability to enhance the adsorption and activation of ethylene glycol for ethanol production. By manipulating subtle structural features, this study offers a fresh perspective on tungsten group catalyst design and underscores the importance of synergistic effects among catalytic sites for the efficient production of ethanol from cellulose.</description><subject>Acids</subject><subject>Aldehydes</subject><subject>Aqueous solutions</subject><subject>Biological activity</subject><subject>Biological properties</subject><subject>Biomass</subject><subject>Carbohydrates</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Cellulose</subject><subject>Chemical reactions</subject><subject>Chemical synthesis</subject><subject>Chemistry and Materials Science</subject><subject>Chromatography</subject><subject>Condensates</subject><subject>Ethanol</subject><subject>Ethylene glycol</subject><subject>Fourier transforms</subject><subject>FTIR spectrometers</subject><subject>Gas flow</subject><subject>Glucose</subject><subject>Hydrogenation</subject><subject>Infrared analysis</subject><subject>Infrared spectrometers</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanoclusters</subject><subject>Nuclear Chemistry</subject><subject>Original Paper</subject><subject>Oxygen enrichment</subject><subject>Particle and Nuclear Physics</subject><subject>Sodium</subject><subject>Spectrum analysis</subject><subject>Synergistic effect</subject><subject>Tungsten</subject><issn>2661-8028</issn><issn>2661-8036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9kF1LwzAUhosoOOb-gFcBr-tO0jRtL2X4MRjsRvEypOnJ1tE1M8lG9--NVvTOi_MB53nfA2-S3FK4pwDF3HNWCp4CiwWsytLhIpkwIWhaQiYuf3dWXicz73cQqbwCyopJsl8P5w325KS06nWLnmDvWr3Fhizd_H09EK2C6s4-eGKsI2GLpGkd6tCdScT26XgPrSba9id0vrU9sYZo7LpjZz2SYAmGreptd5NcGdV5nP3MafL29Pi6eElX6-fl4mGVagYQ0qzmmUHWiIyVipccDQLHUgAtdMFBcQMlzwuRmwrR1CK2AiuVA2uQ0rrOpsnd6Htw9uOIPsidPbo-vpQZzSkwKkoaKTZS2lnvHRp5cO1eubOkIL-SlWOyMiYrv5OVQxRlo8hHuN-g-7P-R_UJC6R92A</recordid><startdate>20250301</startdate><enddate>20250301</enddate><creator>Weng, Yu-Jing</creator><creator>Ding, Zhao-Ying</creator><creator>Li, Ying-Chao</creator><creator>Wu, Yuan-Feng</creator><creator>Xu, Yuan-Yang</creator><creator>Chen, Rui</creator><creator>Zhao, Xiao-Lei</creator><creator>Wang, Hai-Yong</creator><creator>Zhang, Da-Lei</creator><creator>Zhang, Yu-Long</creator><general>Springer Nature Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1459-2054</orcidid></search><sort><creationdate>20250301</creationdate><title>Oxygen vacancies enriched Ir/WOx catalysts for the directly chem-catalytic conversion of cellulose to ethanol</title><author>Weng, Yu-Jing ; Ding, Zhao-Ying ; Li, Ying-Chao ; Wu, Yuan-Feng ; Xu, Yuan-Yang ; Chen, Rui ; Zhao, Xiao-Lei ; Wang, Hai-Yong ; Zhang, Da-Lei ; Zhang, Yu-Long</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-3b43fe2d6328a484efe04e86017c740a4f0845765f9eefb6eef7e9a502de11bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Acids</topic><topic>Aldehydes</topic><topic>Aqueous solutions</topic><topic>Biological activity</topic><topic>Biological properties</topic><topic>Biomass</topic><topic>Carbohydrates</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Cellulose</topic><topic>Chemical reactions</topic><topic>Chemical synthesis</topic><topic>Chemistry and Materials Science</topic><topic>Chromatography</topic><topic>Condensates</topic><topic>Ethanol</topic><topic>Ethylene glycol</topic><topic>Fourier transforms</topic><topic>FTIR spectrometers</topic><topic>Gas flow</topic><topic>Glucose</topic><topic>Hydrogenation</topic><topic>Infrared analysis</topic><topic>Infrared spectrometers</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanoclusters</topic><topic>Nuclear Chemistry</topic><topic>Original Paper</topic><topic>Oxygen enrichment</topic><topic>Particle and Nuclear Physics</topic><topic>Sodium</topic><topic>Spectrum analysis</topic><topic>Synergistic effect</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weng, Yu-Jing</creatorcontrib><creatorcontrib>Ding, Zhao-Ying</creatorcontrib><creatorcontrib>Li, Ying-Chao</creatorcontrib><creatorcontrib>Wu, Yuan-Feng</creatorcontrib><creatorcontrib>Xu, Yuan-Yang</creatorcontrib><creatorcontrib>Chen, Rui</creatorcontrib><creatorcontrib>Zhao, Xiao-Lei</creatorcontrib><creatorcontrib>Wang, Hai-Yong</creatorcontrib><creatorcontrib>Zhang, Da-Lei</creatorcontrib><creatorcontrib>Zhang, Yu-Long</creatorcontrib><collection>CrossRef</collection><jtitle>Tungsten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weng, Yu-Jing</au><au>Ding, Zhao-Ying</au><au>Li, Ying-Chao</au><au>Wu, Yuan-Feng</au><au>Xu, Yuan-Yang</au><au>Chen, Rui</au><au>Zhao, Xiao-Lei</au><au>Wang, Hai-Yong</au><au>Zhang, Da-Lei</au><au>Zhang, Yu-Long</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxygen vacancies enriched Ir/WOx catalysts for the directly chem-catalytic conversion of cellulose to ethanol</atitle><jtitle>Tungsten</jtitle><stitle>Tungsten</stitle><date>2025-03-01</date><risdate>2025</risdate><volume>7</volume><issue>1</issue><spage>88</spage><epage>99</epage><pages>88-99</pages><issn>2661-8028</issn><eissn>2661-8036</eissn><abstract>Tungsten and its oxides are highly versatile catalysts with unique properties that hold great promise for a wide array of applications, including biological pathways and chemical processes. The chemo-catalysis of cellulose to ethanol presents a promising avenue for ethanol synthesis with the potential for enhanced efficiency compared to conventional methods, offering a sustainable and carbon–neutral alternative to existing petrochemical and biological processes. Herein, Ir/WO x catalysts enriched with oxygen vacancies were meticulously prepared and demonstrated remarkable catalytic performance in converting cellulose to ethanol directly in the presence of tungstic acid. The catalyst achieved a high ethanol yield of 66.5% under optimal reaction conditions, approaching the theoretical yield limit of traditional ethanol fermentation. Characterization results revealed the presence of oxygen defects, Bronsted/Lewis acidity, and Ir nanoclusters on the catalyst surface, working synergistically to facilitate the cascade catalysis of cellulose hydrolysis, sugar retro-aldol condensation reaction, and C2 intermediate hydrodeoxygenation to ethanol. In situ Fourier transform infrared spectrometer analysis confirmed the catalyst's ability to enhance the adsorption and activation of ethylene glycol for ethanol production. By manipulating subtle structural features, this study offers a fresh perspective on tungsten group catalyst design and underscores the importance of synergistic effects among catalytic sites for the efficient production of ethanol from cellulose.</abstract><cop>Singapore</cop><pub>Springer Nature Singapore</pub><doi>10.1007/s42864-024-00293-x</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1459-2054</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2661-8028
ispartof Tungsten, 2025-03, Vol.7 (1), p.88-99
issn 2661-8028
2661-8036
language eng
recordid cdi_proquest_journals_3151021681
source Springer Nature - Complete Springer Journals
subjects Acids
Aldehydes
Aqueous solutions
Biological activity
Biological properties
Biomass
Carbohydrates
Carbon
Catalysis
Catalysts
Catalytic converters
Cellulose
Chemical reactions
Chemical synthesis
Chemistry and Materials Science
Chromatography
Condensates
Ethanol
Ethylene glycol
Fourier transforms
FTIR spectrometers
Gas flow
Glucose
Hydrogenation
Infrared analysis
Infrared spectrometers
Materials Engineering
Materials Science
Metallic Materials
Nanoclusters
Nuclear Chemistry
Original Paper
Oxygen enrichment
Particle and Nuclear Physics
Sodium
Spectrum analysis
Synergistic effect
Tungsten
title Oxygen vacancies enriched Ir/WOx catalysts for the directly chem-catalytic conversion of cellulose to ethanol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T10%3A30%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxygen%20vacancies%20enriched%20Ir/WOx%20catalysts%20for%20the%20directly%20chem-catalytic%20conversion%20of%20cellulose%20to%20ethanol&rft.jtitle=Tungsten&rft.au=Weng,%20Yu-Jing&rft.date=2025-03-01&rft.volume=7&rft.issue=1&rft.spage=88&rft.epage=99&rft.pages=88-99&rft.issn=2661-8028&rft.eissn=2661-8036&rft_id=info:doi/10.1007/s42864-024-00293-x&rft_dat=%3Cproquest_cross%3E3151021681%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3151021681&rft_id=info:pmid/&rfr_iscdi=true