Molecular Engineering Strategy for Flexible Organic Crystal Materials Integrating Low Temperature Elasticity and Optical Waveguide Properties Based on Bromo‐Hydroxy Chalcone Derivatives
Flexible organic crystal materials with optical waveguide property have attracted much attention for various applications. Meanwhile, the rising demand for deep space and polar explorations have brought about a growing interest in materials with low temperature flexibility. However, the development...
Gespeichert in:
Veröffentlicht in: | Advanced optical materials 2025-01, Vol.13 (1), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Advanced optical materials |
container_volume | 13 |
creator | Yang, Guiyi Xin, Haotian Liang, Zhengang Zhang, Yan Wang, Lei Cheng, Ziyi Zhao, Songfang Liu, Zhiqiang Cao, Duxia |
description | Flexible organic crystal materials with optical waveguide property have attracted much attention for various applications. Meanwhile, the rising demand for deep space and polar explorations have brought about a growing interest in materials with low temperature flexibility. However, the development of organic crystal materials integrating optical waveguide and low temperature elasticity remains a significant challenge. Here, three flexible organic crystals with bromo‐hydroxy chalcone backbone are developed via molecular engineering strategy. The 4BHIE crystal with 4‐bromo‐N‐ethyl substituent exhibits superior 2D elasticity under mechanical external forces with ≈180° bending and 1.30 mm of curvature. The low optical loss coefficient of only 0.309 dB mm−1 also demonstrates potential applications in flexible optoelectronic waveguides. Interestingly, the introduction of a longer alkyl chain onto N atom of indole moiety (4BHIB) exhibits more remarkable flexibility with 0.35 mm of curvature due to its richer and more complex network of intermolecular interactions compared with that of 4BHIE. Furthermore, 5BHIE crystal with 5‐bromo‐N‐ethyl substituent shows not only elasticity at room temperature but also low‐temperature elasticity in liquid nitrogen with reversible temperature response owing to the strengthening intermolecular interactions at low temperature. 5BHIE crystal displays potential optical waveguide application in low temperature environments.
This work successfully develops three flexible organic crystals with Br‐hydroxy chalcone backbone via molecular engineering strategy. The crystals exhibit excellent elasticity with optimal elastic strain of 13.03% and excellent optical waveguide with optical loss coefficient as low as 0.309 dB mm−1. The crystal with 5‐bromo‐N‐ethyl substituent maintains excellent flexibility and optical waveguide properties even at liquid nitrogen temperature. |
doi_str_mv | 10.1002/adom.202401922 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3150979783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3150979783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2422-500ca43344bee323a45fe46cc31d1102b95abd0539669ba4a164a2ee8d67eb573</originalsourceid><addsrcrecordid>eNqFkb1u2zAUhYWiARokWTtfoLNd_kkKx8RxfgAbLpAUHYUr6lplIJMuKTnR1kfo-_Rt-iSh4aLNlon3AN_HM5ws-8jZlDMmPmPjN1PBhGJcC_EuOxZc5xPOSv7-1f0hO4vxkTGWgtSqPM5-L31HZugwwNy11hEF61q47wP21I6w9gGuO3q2dUewCi06a2AWxthjB8vEBItdhDuX6KTs3YV_ggfabCnlIRDMO4y9NbYfAV0Dq20KSf6GO2oH2xB8CT7BvaUIlxipAe_gMviN__Pz1-3YBP88wuw7dsY7gqvUuEtFO4qn2dE6ldPZ3_ck-3o9f5jdTharm7vZxWJihBJikjNmUEmpVE0khUSVr0kVxkjecM5ErXOsG5ZLXRS6RoW8UCiIzpuipDov5Un26fDvNvgfA8W-evRDcKmykjxnutTluUzU9ECZ4GMMtK62wW4wjBVn1X6jar9R9W-jJOiD8GQ7Gt-gq4ur1fK_-wKHb5rG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150979783</pqid></control><display><type>article</type><title>Molecular Engineering Strategy for Flexible Organic Crystal Materials Integrating Low Temperature Elasticity and Optical Waveguide Properties Based on Bromo‐Hydroxy Chalcone Derivatives</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yang, Guiyi ; Xin, Haotian ; Liang, Zhengang ; Zhang, Yan ; Wang, Lei ; Cheng, Ziyi ; Zhao, Songfang ; Liu, Zhiqiang ; Cao, Duxia</creator><creatorcontrib>Yang, Guiyi ; Xin, Haotian ; Liang, Zhengang ; Zhang, Yan ; Wang, Lei ; Cheng, Ziyi ; Zhao, Songfang ; Liu, Zhiqiang ; Cao, Duxia</creatorcontrib><description>Flexible organic crystal materials with optical waveguide property have attracted much attention for various applications. Meanwhile, the rising demand for deep space and polar explorations have brought about a growing interest in materials with low temperature flexibility. However, the development of organic crystal materials integrating optical waveguide and low temperature elasticity remains a significant challenge. Here, three flexible organic crystals with bromo‐hydroxy chalcone backbone are developed via molecular engineering strategy. The 4BHIE crystal with 4‐bromo‐N‐ethyl substituent exhibits superior 2D elasticity under mechanical external forces with ≈180° bending and 1.30 mm of curvature. The low optical loss coefficient of only 0.309 dB mm−1 also demonstrates potential applications in flexible optoelectronic waveguides. Interestingly, the introduction of a longer alkyl chain onto N atom of indole moiety (4BHIB) exhibits more remarkable flexibility with 0.35 mm of curvature due to its richer and more complex network of intermolecular interactions compared with that of 4BHIE. Furthermore, 5BHIE crystal with 5‐bromo‐N‐ethyl substituent shows not only elasticity at room temperature but also low‐temperature elasticity in liquid nitrogen with reversible temperature response owing to the strengthening intermolecular interactions at low temperature. 5BHIE crystal displays potential optical waveguide application in low temperature environments.
This work successfully develops three flexible organic crystals with Br‐hydroxy chalcone backbone via molecular engineering strategy. The crystals exhibit excellent elasticity with optimal elastic strain of 13.03% and excellent optical waveguide with optical loss coefficient as low as 0.309 dB mm−1. The crystal with 5‐bromo‐N‐ethyl substituent maintains excellent flexibility and optical waveguide properties even at liquid nitrogen temperature.</description><identifier>ISSN: 2195-1071</identifier><identifier>EISSN: 2195-1071</identifier><identifier>DOI: 10.1002/adom.202401922</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>chalcone ; Crystal growth ; Curvature ; Elasticity ; Flexibility ; flexible organic crystals ; Liquid nitrogen ; low temperature elasticity ; Low temperature environments ; Optical properties ; Optical waveguides ; Optoelectronics ; Organic crystals ; Room temperature</subject><ispartof>Advanced optical materials, 2025-01, Vol.13 (1), p.n/a</ispartof><rights>2024 Wiley‐VCH GmbH</rights><rights>2025 Wiley‐VCH GmbH</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2422-500ca43344bee323a45fe46cc31d1102b95abd0539669ba4a164a2ee8d67eb573</cites><orcidid>0000-0002-9452-4045</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadom.202401922$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadom.202401922$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Yang, Guiyi</creatorcontrib><creatorcontrib>Xin, Haotian</creatorcontrib><creatorcontrib>Liang, Zhengang</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Cheng, Ziyi</creatorcontrib><creatorcontrib>Zhao, Songfang</creatorcontrib><creatorcontrib>Liu, Zhiqiang</creatorcontrib><creatorcontrib>Cao, Duxia</creatorcontrib><title>Molecular Engineering Strategy for Flexible Organic Crystal Materials Integrating Low Temperature Elasticity and Optical Waveguide Properties Based on Bromo‐Hydroxy Chalcone Derivatives</title><title>Advanced optical materials</title><description>Flexible organic crystal materials with optical waveguide property have attracted much attention for various applications. Meanwhile, the rising demand for deep space and polar explorations have brought about a growing interest in materials with low temperature flexibility. However, the development of organic crystal materials integrating optical waveguide and low temperature elasticity remains a significant challenge. Here, three flexible organic crystals with bromo‐hydroxy chalcone backbone are developed via molecular engineering strategy. The 4BHIE crystal with 4‐bromo‐N‐ethyl substituent exhibits superior 2D elasticity under mechanical external forces with ≈180° bending and 1.30 mm of curvature. The low optical loss coefficient of only 0.309 dB mm−1 also demonstrates potential applications in flexible optoelectronic waveguides. Interestingly, the introduction of a longer alkyl chain onto N atom of indole moiety (4BHIB) exhibits more remarkable flexibility with 0.35 mm of curvature due to its richer and more complex network of intermolecular interactions compared with that of 4BHIE. Furthermore, 5BHIE crystal with 5‐bromo‐N‐ethyl substituent shows not only elasticity at room temperature but also low‐temperature elasticity in liquid nitrogen with reversible temperature response owing to the strengthening intermolecular interactions at low temperature. 5BHIE crystal displays potential optical waveguide application in low temperature environments.
This work successfully develops three flexible organic crystals with Br‐hydroxy chalcone backbone via molecular engineering strategy. The crystals exhibit excellent elasticity with optimal elastic strain of 13.03% and excellent optical waveguide with optical loss coefficient as low as 0.309 dB mm−1. The crystal with 5‐bromo‐N‐ethyl substituent maintains excellent flexibility and optical waveguide properties even at liquid nitrogen temperature.</description><subject>chalcone</subject><subject>Crystal growth</subject><subject>Curvature</subject><subject>Elasticity</subject><subject>Flexibility</subject><subject>flexible organic crystals</subject><subject>Liquid nitrogen</subject><subject>low temperature elasticity</subject><subject>Low temperature environments</subject><subject>Optical properties</subject><subject>Optical waveguides</subject><subject>Optoelectronics</subject><subject>Organic crystals</subject><subject>Room temperature</subject><issn>2195-1071</issn><issn>2195-1071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkb1u2zAUhYWiARokWTtfoLNd_kkKx8RxfgAbLpAUHYUr6lplIJMuKTnR1kfo-_Rt-iSh4aLNlon3AN_HM5ws-8jZlDMmPmPjN1PBhGJcC_EuOxZc5xPOSv7-1f0hO4vxkTGWgtSqPM5-L31HZugwwNy11hEF61q47wP21I6w9gGuO3q2dUewCi06a2AWxthjB8vEBItdhDuX6KTs3YV_ggfabCnlIRDMO4y9NbYfAV0Dq20KSf6GO2oH2xB8CT7BvaUIlxipAe_gMviN__Pz1-3YBP88wuw7dsY7gqvUuEtFO4qn2dE6ldPZ3_ck-3o9f5jdTharm7vZxWJihBJikjNmUEmpVE0khUSVr0kVxkjecM5ErXOsG5ZLXRS6RoW8UCiIzpuipDov5Un26fDvNvgfA8W-evRDcKmykjxnutTluUzU9ECZ4GMMtK62wW4wjBVn1X6jar9R9W-jJOiD8GQ7Gt-gq4ur1fK_-wKHb5rG</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Yang, Guiyi</creator><creator>Xin, Haotian</creator><creator>Liang, Zhengang</creator><creator>Zhang, Yan</creator><creator>Wang, Lei</creator><creator>Cheng, Ziyi</creator><creator>Zhao, Songfang</creator><creator>Liu, Zhiqiang</creator><creator>Cao, Duxia</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9452-4045</orcidid></search><sort><creationdate>20250101</creationdate><title>Molecular Engineering Strategy for Flexible Organic Crystal Materials Integrating Low Temperature Elasticity and Optical Waveguide Properties Based on Bromo‐Hydroxy Chalcone Derivatives</title><author>Yang, Guiyi ; Xin, Haotian ; Liang, Zhengang ; Zhang, Yan ; Wang, Lei ; Cheng, Ziyi ; Zhao, Songfang ; Liu, Zhiqiang ; Cao, Duxia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2422-500ca43344bee323a45fe46cc31d1102b95abd0539669ba4a164a2ee8d67eb573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>chalcone</topic><topic>Crystal growth</topic><topic>Curvature</topic><topic>Elasticity</topic><topic>Flexibility</topic><topic>flexible organic crystals</topic><topic>Liquid nitrogen</topic><topic>low temperature elasticity</topic><topic>Low temperature environments</topic><topic>Optical properties</topic><topic>Optical waveguides</topic><topic>Optoelectronics</topic><topic>Organic crystals</topic><topic>Room temperature</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Guiyi</creatorcontrib><creatorcontrib>Xin, Haotian</creatorcontrib><creatorcontrib>Liang, Zhengang</creatorcontrib><creatorcontrib>Zhang, Yan</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Cheng, Ziyi</creatorcontrib><creatorcontrib>Zhao, Songfang</creatorcontrib><creatorcontrib>Liu, Zhiqiang</creatorcontrib><creatorcontrib>Cao, Duxia</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced optical materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Guiyi</au><au>Xin, Haotian</au><au>Liang, Zhengang</au><au>Zhang, Yan</au><au>Wang, Lei</au><au>Cheng, Ziyi</au><au>Zhao, Songfang</au><au>Liu, Zhiqiang</au><au>Cao, Duxia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Engineering Strategy for Flexible Organic Crystal Materials Integrating Low Temperature Elasticity and Optical Waveguide Properties Based on Bromo‐Hydroxy Chalcone Derivatives</atitle><jtitle>Advanced optical materials</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>13</volume><issue>1</issue><epage>n/a</epage><issn>2195-1071</issn><eissn>2195-1071</eissn><abstract>Flexible organic crystal materials with optical waveguide property have attracted much attention for various applications. Meanwhile, the rising demand for deep space and polar explorations have brought about a growing interest in materials with low temperature flexibility. However, the development of organic crystal materials integrating optical waveguide and low temperature elasticity remains a significant challenge. Here, three flexible organic crystals with bromo‐hydroxy chalcone backbone are developed via molecular engineering strategy. The 4BHIE crystal with 4‐bromo‐N‐ethyl substituent exhibits superior 2D elasticity under mechanical external forces with ≈180° bending and 1.30 mm of curvature. The low optical loss coefficient of only 0.309 dB mm−1 also demonstrates potential applications in flexible optoelectronic waveguides. Interestingly, the introduction of a longer alkyl chain onto N atom of indole moiety (4BHIB) exhibits more remarkable flexibility with 0.35 mm of curvature due to its richer and more complex network of intermolecular interactions compared with that of 4BHIE. Furthermore, 5BHIE crystal with 5‐bromo‐N‐ethyl substituent shows not only elasticity at room temperature but also low‐temperature elasticity in liquid nitrogen with reversible temperature response owing to the strengthening intermolecular interactions at low temperature. 5BHIE crystal displays potential optical waveguide application in low temperature environments.
This work successfully develops three flexible organic crystals with Br‐hydroxy chalcone backbone via molecular engineering strategy. The crystals exhibit excellent elasticity with optimal elastic strain of 13.03% and excellent optical waveguide with optical loss coefficient as low as 0.309 dB mm−1. The crystal with 5‐bromo‐N‐ethyl substituent maintains excellent flexibility and optical waveguide properties even at liquid nitrogen temperature.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adom.202401922</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-9452-4045</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2195-1071 |
ispartof | Advanced optical materials, 2025-01, Vol.13 (1), p.n/a |
issn | 2195-1071 2195-1071 |
language | eng |
recordid | cdi_proquest_journals_3150979783 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | chalcone Crystal growth Curvature Elasticity Flexibility flexible organic crystals Liquid nitrogen low temperature elasticity Low temperature environments Optical properties Optical waveguides Optoelectronics Organic crystals Room temperature |
title | Molecular Engineering Strategy for Flexible Organic Crystal Materials Integrating Low Temperature Elasticity and Optical Waveguide Properties Based on Bromo‐Hydroxy Chalcone Derivatives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A17%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Engineering%20Strategy%20for%20Flexible%20Organic%20Crystal%20Materials%20Integrating%20Low%20Temperature%20Elasticity%20and%20Optical%20Waveguide%20Properties%20Based%20on%20Bromo%E2%80%90Hydroxy%20Chalcone%20Derivatives&rft.jtitle=Advanced%20optical%20materials&rft.au=Yang,%20Guiyi&rft.date=2025-01-01&rft.volume=13&rft.issue=1&rft.epage=n/a&rft.issn=2195-1071&rft.eissn=2195-1071&rft_id=info:doi/10.1002/adom.202401922&rft_dat=%3Cproquest_cross%3E3150979783%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150979783&rft_id=info:pmid/&rfr_iscdi=true |