Research on adaptive coupling trajectory tracking anti-swing control strategy for three-dimensional double-pendulum overhead crane

In the transportation process of a three-dimensional double-pendulum overhead crane, the system is significantly influenced by the pronounced coupling introduced by the double-pendulum effect, posing a considerable challenge for the development of effective anti-swing control strategies. Moreover, u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Institute of Measurement and Control 2025-01, Vol.47 (1), p.84-99
Hauptverfasser: Li, Dong, Xie, Tianhu, Li, Guowei, Hu, Songming, Yao, Jingfeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue 1
container_start_page 84
container_title Transactions of the Institute of Measurement and Control
container_volume 47
creator Li, Dong
Xie, Tianhu
Li, Guowei
Hu, Songming
Yao, Jingfeng
description In the transportation process of a three-dimensional double-pendulum overhead crane, the system is significantly influenced by the pronounced coupling introduced by the double-pendulum effect, posing a considerable challenge for the development of effective anti-swing control strategies. Moreover, uncertainties in certain system parameters and errors in trolley positioning contribute to the complexity of anti-swing control strategy design. To address these practical issues, a control strategy is proposed: First, an S-shaped transport trajectory with minimal positioning error is introduced, incorporating more system parameters into the coupling signal design to enhance system coupling. Based on this, an error-coupled trajectory signal is introduced. Second, the error-coupled trajectory signal is integrated into the energy function, and leveraging adaptive principles, an adaptive coupled trajectory tracking anti-swing control strategy is proposed to estimate uncertain system parameters online. Subsequently, the asymptotic stability of the equilibrium point of the closed-loop system is verified using the Lyapunov techniques and the Barbalat lemma. Finally, through simulations and experiments, it is demonstrated that the proposed control strategy not only ensures precise positioning of the trolley and bridge but also effectively suppresses oscillations of the hook and load, exhibiting excellent control performance. Even in scenarios where system parameters undergo changes or external disturbances are introduced, the proposed control strategy exhibits strong robustness and holds significant practical potential.
doi_str_mv 10.1177/01423312241239367
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3150876708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_01423312241239367</sage_id><sourcerecordid>3150876708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-84e0eb5c04515fb8091376777a62300a476dc4ab1aefa725d7a0cdac366621f43</originalsourceid><addsrcrecordid>eNp1UF1LwzAUDaLgnP4A3wI-R5MmTbZHGX7BQBB9LrfJ7dbZNTVJJ3v1l9sywQfx6R7u-eBwCLkU_FoIY264UJmUIsuUyORcanNEJkIZw7jU82MyGXk2Ck7JWYwbzrlSWk3I1wtGhGDX1LcUHHSp3iG1vu-aul3RFGCDNvmwH6F9H3_QpprFzxFa36bgGxoHMuFqTysfaFoHRObqLbax9i001Pm-bJB12Lq-6bfU7zCsERy1AVo8JycVNBEvfu6UvN3fvS4e2fL54Wlxu2Q20yqxmUKOZW65ykVelTM-F9JoYwzoTHIOymhnFZQCsAKT5c4Atw6s1FpnolJySq4OuV3wHz3GVGx8H4Z-sZAi57MhjM8GlTiobPAxBqyKLtRbCPtC8GKcuvgz9eC5PngirPA39X_DN9_hgLc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150876708</pqid></control><display><type>article</type><title>Research on adaptive coupling trajectory tracking anti-swing control strategy for three-dimensional double-pendulum overhead crane</title><source>SAGE Complete A-Z List</source><creator>Li, Dong ; Xie, Tianhu ; Li, Guowei ; Hu, Songming ; Yao, Jingfeng</creator><creatorcontrib>Li, Dong ; Xie, Tianhu ; Li, Guowei ; Hu, Songming ; Yao, Jingfeng</creatorcontrib><description>In the transportation process of a three-dimensional double-pendulum overhead crane, the system is significantly influenced by the pronounced coupling introduced by the double-pendulum effect, posing a considerable challenge for the development of effective anti-swing control strategies. Moreover, uncertainties in certain system parameters and errors in trolley positioning contribute to the complexity of anti-swing control strategy design. To address these practical issues, a control strategy is proposed: First, an S-shaped transport trajectory with minimal positioning error is introduced, incorporating more system parameters into the coupling signal design to enhance system coupling. Based on this, an error-coupled trajectory signal is introduced. Second, the error-coupled trajectory signal is integrated into the energy function, and leveraging adaptive principles, an adaptive coupled trajectory tracking anti-swing control strategy is proposed to estimate uncertain system parameters online. Subsequently, the asymptotic stability of the equilibrium point of the closed-loop system is verified using the Lyapunov techniques and the Barbalat lemma. Finally, through simulations and experiments, it is demonstrated that the proposed control strategy not only ensures precise positioning of the trolley and bridge but also effectively suppresses oscillations of the hook and load, exhibiting excellent control performance. Even in scenarios where system parameters undergo changes or external disturbances are introduced, the proposed control strategy exhibits strong robustness and holds significant practical potential.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/01423312241239367</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Adaptive control ; Adaptive systems ; Closed loops ; Coupling ; Cranes ; Errors ; Feedback control ; Parameter estimation ; Parameter robustness ; Parameter uncertainty ; Pendulums ; Robust control ; Tracking</subject><ispartof>Transactions of the Institute of Measurement and Control, 2025-01, Vol.47 (1), p.84-99</ispartof><rights>The Author(s) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c264t-84e0eb5c04515fb8091376777a62300a476dc4ab1aefa725d7a0cdac366621f43</cites><orcidid>0000-0002-8394-0369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/01423312241239367$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/01423312241239367$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids></links><search><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Xie, Tianhu</creatorcontrib><creatorcontrib>Li, Guowei</creatorcontrib><creatorcontrib>Hu, Songming</creatorcontrib><creatorcontrib>Yao, Jingfeng</creatorcontrib><title>Research on adaptive coupling trajectory tracking anti-swing control strategy for three-dimensional double-pendulum overhead crane</title><title>Transactions of the Institute of Measurement and Control</title><description>In the transportation process of a three-dimensional double-pendulum overhead crane, the system is significantly influenced by the pronounced coupling introduced by the double-pendulum effect, posing a considerable challenge for the development of effective anti-swing control strategies. Moreover, uncertainties in certain system parameters and errors in trolley positioning contribute to the complexity of anti-swing control strategy design. To address these practical issues, a control strategy is proposed: First, an S-shaped transport trajectory with minimal positioning error is introduced, incorporating more system parameters into the coupling signal design to enhance system coupling. Based on this, an error-coupled trajectory signal is introduced. Second, the error-coupled trajectory signal is integrated into the energy function, and leveraging adaptive principles, an adaptive coupled trajectory tracking anti-swing control strategy is proposed to estimate uncertain system parameters online. Subsequently, the asymptotic stability of the equilibrium point of the closed-loop system is verified using the Lyapunov techniques and the Barbalat lemma. Finally, through simulations and experiments, it is demonstrated that the proposed control strategy not only ensures precise positioning of the trolley and bridge but also effectively suppresses oscillations of the hook and load, exhibiting excellent control performance. Even in scenarios where system parameters undergo changes or external disturbances are introduced, the proposed control strategy exhibits strong robustness and holds significant practical potential.</description><subject>Adaptive control</subject><subject>Adaptive systems</subject><subject>Closed loops</subject><subject>Coupling</subject><subject>Cranes</subject><subject>Errors</subject><subject>Feedback control</subject><subject>Parameter estimation</subject><subject>Parameter robustness</subject><subject>Parameter uncertainty</subject><subject>Pendulums</subject><subject>Robust control</subject><subject>Tracking</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp1UF1LwzAUDaLgnP4A3wI-R5MmTbZHGX7BQBB9LrfJ7dbZNTVJJ3v1l9sywQfx6R7u-eBwCLkU_FoIY264UJmUIsuUyORcanNEJkIZw7jU82MyGXk2Ck7JWYwbzrlSWk3I1wtGhGDX1LcUHHSp3iG1vu-aul3RFGCDNvmwH6F9H3_QpprFzxFa36bgGxoHMuFqTysfaFoHRObqLbax9i001Pm-bJB12Lq-6bfU7zCsERy1AVo8JycVNBEvfu6UvN3fvS4e2fL54Wlxu2Q20yqxmUKOZW65ykVelTM-F9JoYwzoTHIOymhnFZQCsAKT5c4Atw6s1FpnolJySq4OuV3wHz3GVGx8H4Z-sZAi57MhjM8GlTiobPAxBqyKLtRbCPtC8GKcuvgz9eC5PngirPA39X_DN9_hgLc</recordid><startdate>20250101</startdate><enddate>20250101</enddate><creator>Li, Dong</creator><creator>Xie, Tianhu</creator><creator>Li, Guowei</creator><creator>Hu, Songming</creator><creator>Yao, Jingfeng</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8394-0369</orcidid></search><sort><creationdate>20250101</creationdate><title>Research on adaptive coupling trajectory tracking anti-swing control strategy for three-dimensional double-pendulum overhead crane</title><author>Li, Dong ; Xie, Tianhu ; Li, Guowei ; Hu, Songming ; Yao, Jingfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-84e0eb5c04515fb8091376777a62300a476dc4ab1aefa725d7a0cdac366621f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Adaptive control</topic><topic>Adaptive systems</topic><topic>Closed loops</topic><topic>Coupling</topic><topic>Cranes</topic><topic>Errors</topic><topic>Feedback control</topic><topic>Parameter estimation</topic><topic>Parameter robustness</topic><topic>Parameter uncertainty</topic><topic>Pendulums</topic><topic>Robust control</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Xie, Tianhu</creatorcontrib><creatorcontrib>Li, Guowei</creatorcontrib><creatorcontrib>Hu, Songming</creatorcontrib><creatorcontrib>Yao, Jingfeng</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Dong</au><au>Xie, Tianhu</au><au>Li, Guowei</au><au>Hu, Songming</au><au>Yao, Jingfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on adaptive coupling trajectory tracking anti-swing control strategy for three-dimensional double-pendulum overhead crane</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>2025-01-01</date><risdate>2025</risdate><volume>47</volume><issue>1</issue><spage>84</spage><epage>99</epage><pages>84-99</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>In the transportation process of a three-dimensional double-pendulum overhead crane, the system is significantly influenced by the pronounced coupling introduced by the double-pendulum effect, posing a considerable challenge for the development of effective anti-swing control strategies. Moreover, uncertainties in certain system parameters and errors in trolley positioning contribute to the complexity of anti-swing control strategy design. To address these practical issues, a control strategy is proposed: First, an S-shaped transport trajectory with minimal positioning error is introduced, incorporating more system parameters into the coupling signal design to enhance system coupling. Based on this, an error-coupled trajectory signal is introduced. Second, the error-coupled trajectory signal is integrated into the energy function, and leveraging adaptive principles, an adaptive coupled trajectory tracking anti-swing control strategy is proposed to estimate uncertain system parameters online. Subsequently, the asymptotic stability of the equilibrium point of the closed-loop system is verified using the Lyapunov techniques and the Barbalat lemma. Finally, through simulations and experiments, it is demonstrated that the proposed control strategy not only ensures precise positioning of the trolley and bridge but also effectively suppresses oscillations of the hook and load, exhibiting excellent control performance. Even in scenarios where system parameters undergo changes or external disturbances are introduced, the proposed control strategy exhibits strong robustness and holds significant practical potential.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/01423312241239367</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8394-0369</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0142-3312
ispartof Transactions of the Institute of Measurement and Control, 2025-01, Vol.47 (1), p.84-99
issn 0142-3312
1477-0369
language eng
recordid cdi_proquest_journals_3150876708
source SAGE Complete A-Z List
subjects Adaptive control
Adaptive systems
Closed loops
Coupling
Cranes
Errors
Feedback control
Parameter estimation
Parameter robustness
Parameter uncertainty
Pendulums
Robust control
Tracking
title Research on adaptive coupling trajectory tracking anti-swing control strategy for three-dimensional double-pendulum overhead crane
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A34%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20adaptive%20coupling%20trajectory%20tracking%20anti-swing%20control%20strategy%20for%20three-dimensional%20double-pendulum%20overhead%20crane&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Li,%20Dong&rft.date=2025-01-01&rft.volume=47&rft.issue=1&rft.spage=84&rft.epage=99&rft.pages=84-99&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/01423312241239367&rft_dat=%3Cproquest_cross%3E3150876708%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150876708&rft_id=info:pmid/&rft_sage_id=10.1177_01423312241239367&rfr_iscdi=true