Assessing China's Hillside Urban Expansion and Its Urban Thermal Environmental Impacts Using Multisource Data

Global urban expansion presents a clear upward trend, reshaping urban socioeconomic frameworks and environmental dynamics. This study developed a multisource classification framework to accurately identify hillside urban expansion (HUE) across China, a region undergoing rapid transformation amidst d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE geoscience and remote sensing letters 2025, Vol.22, p.1-5
Hauptverfasser: Wang, Junru, Jiang, Linlin, Bao, Shanju, Wang, Zuo, Shi, Kaifang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue
container_start_page 1
container_title IEEE geoscience and remote sensing letters
container_volume 22
creator Wang, Junru
Jiang, Linlin
Bao, Shanju
Wang, Zuo
Shi, Kaifang
description Global urban expansion presents a clear upward trend, reshaping urban socioeconomic frameworks and environmental dynamics. This study developed a multisource classification framework to accurately identify hillside urban expansion (HUE) across China, a region undergoing rapid transformation amidst diverse mountainous landscapes. Based on this foundation, we investigated the spatiotemporal evolution patterns of HUE and analyzed its influence on the urban thermal environment (UTE). Results show that leveraging a developed classification framework, the identified HUE exhibits stronger edge detail capture and higher patch integrity, achieving an overall accuracy of 78%. HUE in China shows a general trend of spatial expansion, predominantly dominated by low hillside urban expansion (LC) and moderate hillside urban expansion (MC). The relationship between HUE and land surface temperature (LST) is predominantly positive and exhibits variability. Specifically, LC maintains a stable positive correlation with LST, whereas MC and heavy HUE display varying relationships with LST. Our study presents an effective way for accurately identifying and evaluating HUE and its UTE effects. It provides a scientific reference for land use and spatial governance studies and holds notable implications for the progress evaluation with the UN's Sustainable Development Goals by 2030, particularly SDG 11 (Sustainable Cities).
doi_str_mv 10.1109/LGRS.2024.3520102
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_3150556126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10810463</ieee_id><sourcerecordid>3150556126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c176t-292e39835e409a4015d2ec2bb9b1eaafd966415db0e52a4b470efa4da44e4e583</originalsourceid><addsrcrecordid>eNpNkE9Lw0AQxRdRsFY_gOBhwYOn1N3Nbv4cpda2UBG0BW_LJJnYLckm7qai397E9uBpZh6_NzM8Qq45m3DO0vvV_PVtIpiQk1AJxpk4ISOuVBIwFfPToZcqUGnyfk4uvN-xnkySeETqB-_Re2M_6HRrLNx5ujBV5U2BdOMysHT23YL1prEUbEGXnT_q6y26Gio6s1_GNbZG2_XTsm4hH5i_lc_7qjO-2bsc6SN0cEnOSqg8Xh3rmGyeZuvpIli9zJfTh1WQ8zjqApEKDNMkVChZCpJxVQjMRZalGUeAskijSPZixlAJkJmMGZYgC5ASJaokHJPbw97WNZ979J3e9U_Y_qQOuWJKRVxEPcUPVO4a7x2WunWmBvejOdNDqnpIVQ-p6mOqvefm4DGI-I9POJNRGP4CSKB0Yg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150556126</pqid></control><display><type>article</type><title>Assessing China's Hillside Urban Expansion and Its Urban Thermal Environmental Impacts Using Multisource Data</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Junru ; Jiang, Linlin ; Bao, Shanju ; Wang, Zuo ; Shi, Kaifang</creator><creatorcontrib>Wang, Junru ; Jiang, Linlin ; Bao, Shanju ; Wang, Zuo ; Shi, Kaifang</creatorcontrib><description>Global urban expansion presents a clear upward trend, reshaping urban socioeconomic frameworks and environmental dynamics. This study developed a multisource classification framework to accurately identify hillside urban expansion (HUE) across China, a region undergoing rapid transformation amidst diverse mountainous landscapes. Based on this foundation, we investigated the spatiotemporal evolution patterns of HUE and analyzed its influence on the urban thermal environment (UTE). Results show that leveraging a developed classification framework, the identified HUE exhibits stronger edge detail capture and higher patch integrity, achieving an overall accuracy of 78%. HUE in China shows a general trend of spatial expansion, predominantly dominated by low hillside urban expansion (LC) and moderate hillside urban expansion (MC). The relationship between HUE and land surface temperature (LST) is predominantly positive and exhibits variability. Specifically, LC maintains a stable positive correlation with LST, whereas MC and heavy HUE display varying relationships with LST. Our study presents an effective way for accurately identifying and evaluating HUE and its UTE effects. It provides a scientific reference for land use and spatial governance studies and holds notable implications for the progress evaluation with the UN's Sustainable Development Goals by 2030, particularly SDG 11 (Sustainable Cities).</description><identifier>ISSN: 1545-598X</identifier><identifier>EISSN: 1558-0571</identifier><identifier>DOI: 10.1109/LGRS.2024.3520102</identifier><identifier>CODEN: IGRSBY</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>China ; Classification ; digital elevation model (DEM) ; Environmental impact ; Evaluation ; hillside urban expansion (HUE) ; Land surface ; Land surface temperature ; Land use ; nighttime light (NTL) remote sensing ; Normalized difference vegetation index ; Remote sensing ; Socioeconomics ; Soft sensors ; Spatial resolution ; Spatiotemporal phenomena ; Surface temperature ; Sustainability ; Sustainable development ; Sustainable Development Goals ; thermal environment ; Thermal environments ; Thermal transformations ; Urban areas ; Urban development ; Urban sprawl</subject><ispartof>IEEE geoscience and remote sensing letters, 2025, Vol.22, p.1-5</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c176t-292e39835e409a4015d2ec2bb9b1eaafd966415db0e52a4b470efa4da44e4e583</cites><orcidid>0000-0001-9047-2885</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10810463$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10810463$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Junru</creatorcontrib><creatorcontrib>Jiang, Linlin</creatorcontrib><creatorcontrib>Bao, Shanju</creatorcontrib><creatorcontrib>Wang, Zuo</creatorcontrib><creatorcontrib>Shi, Kaifang</creatorcontrib><title>Assessing China's Hillside Urban Expansion and Its Urban Thermal Environmental Impacts Using Multisource Data</title><title>IEEE geoscience and remote sensing letters</title><addtitle>LGRS</addtitle><description>Global urban expansion presents a clear upward trend, reshaping urban socioeconomic frameworks and environmental dynamics. This study developed a multisource classification framework to accurately identify hillside urban expansion (HUE) across China, a region undergoing rapid transformation amidst diverse mountainous landscapes. Based on this foundation, we investigated the spatiotemporal evolution patterns of HUE and analyzed its influence on the urban thermal environment (UTE). Results show that leveraging a developed classification framework, the identified HUE exhibits stronger edge detail capture and higher patch integrity, achieving an overall accuracy of 78%. HUE in China shows a general trend of spatial expansion, predominantly dominated by low hillside urban expansion (LC) and moderate hillside urban expansion (MC). The relationship between HUE and land surface temperature (LST) is predominantly positive and exhibits variability. Specifically, LC maintains a stable positive correlation with LST, whereas MC and heavy HUE display varying relationships with LST. Our study presents an effective way for accurately identifying and evaluating HUE and its UTE effects. It provides a scientific reference for land use and spatial governance studies and holds notable implications for the progress evaluation with the UN's Sustainable Development Goals by 2030, particularly SDG 11 (Sustainable Cities).</description><subject>China</subject><subject>Classification</subject><subject>digital elevation model (DEM)</subject><subject>Environmental impact</subject><subject>Evaluation</subject><subject>hillside urban expansion (HUE)</subject><subject>Land surface</subject><subject>Land surface temperature</subject><subject>Land use</subject><subject>nighttime light (NTL) remote sensing</subject><subject>Normalized difference vegetation index</subject><subject>Remote sensing</subject><subject>Socioeconomics</subject><subject>Soft sensors</subject><subject>Spatial resolution</subject><subject>Spatiotemporal phenomena</subject><subject>Surface temperature</subject><subject>Sustainability</subject><subject>Sustainable development</subject><subject>Sustainable Development Goals</subject><subject>thermal environment</subject><subject>Thermal environments</subject><subject>Thermal transformations</subject><subject>Urban areas</subject><subject>Urban development</subject><subject>Urban sprawl</subject><issn>1545-598X</issn><issn>1558-0571</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE9Lw0AQxRdRsFY_gOBhwYOn1N3Nbv4cpda2UBG0BW_LJJnYLckm7qai397E9uBpZh6_NzM8Qq45m3DO0vvV_PVtIpiQk1AJxpk4ISOuVBIwFfPToZcqUGnyfk4uvN-xnkySeETqB-_Re2M_6HRrLNx5ujBV5U2BdOMysHT23YL1prEUbEGXnT_q6y26Gio6s1_GNbZG2_XTsm4hH5i_lc_7qjO-2bsc6SN0cEnOSqg8Xh3rmGyeZuvpIli9zJfTh1WQ8zjqApEKDNMkVChZCpJxVQjMRZalGUeAskijSPZixlAJkJmMGZYgC5ASJaokHJPbw97WNZ979J3e9U_Y_qQOuWJKRVxEPcUPVO4a7x2WunWmBvejOdNDqnpIVQ-p6mOqvefm4DGI-I9POJNRGP4CSKB0Yg</recordid><startdate>2025</startdate><enddate>2025</enddate><creator>Wang, Junru</creator><creator>Jiang, Linlin</creator><creator>Bao, Shanju</creator><creator>Wang, Zuo</creator><creator>Shi, Kaifang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>JQ2</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9047-2885</orcidid></search><sort><creationdate>2025</creationdate><title>Assessing China's Hillside Urban Expansion and Its Urban Thermal Environmental Impacts Using Multisource Data</title><author>Wang, Junru ; Jiang, Linlin ; Bao, Shanju ; Wang, Zuo ; Shi, Kaifang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c176t-292e39835e409a4015d2ec2bb9b1eaafd966415db0e52a4b470efa4da44e4e583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>China</topic><topic>Classification</topic><topic>digital elevation model (DEM)</topic><topic>Environmental impact</topic><topic>Evaluation</topic><topic>hillside urban expansion (HUE)</topic><topic>Land surface</topic><topic>Land surface temperature</topic><topic>Land use</topic><topic>nighttime light (NTL) remote sensing</topic><topic>Normalized difference vegetation index</topic><topic>Remote sensing</topic><topic>Socioeconomics</topic><topic>Soft sensors</topic><topic>Spatial resolution</topic><topic>Spatiotemporal phenomena</topic><topic>Surface temperature</topic><topic>Sustainability</topic><topic>Sustainable development</topic><topic>Sustainable Development Goals</topic><topic>thermal environment</topic><topic>Thermal environments</topic><topic>Thermal transformations</topic><topic>Urban areas</topic><topic>Urban development</topic><topic>Urban sprawl</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Junru</creatorcontrib><creatorcontrib>Jiang, Linlin</creatorcontrib><creatorcontrib>Bao, Shanju</creatorcontrib><creatorcontrib>Wang, Zuo</creatorcontrib><creatorcontrib>Shi, Kaifang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE geoscience and remote sensing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Junru</au><au>Jiang, Linlin</au><au>Bao, Shanju</au><au>Wang, Zuo</au><au>Shi, Kaifang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing China's Hillside Urban Expansion and Its Urban Thermal Environmental Impacts Using Multisource Data</atitle><jtitle>IEEE geoscience and remote sensing letters</jtitle><stitle>LGRS</stitle><date>2025</date><risdate>2025</risdate><volume>22</volume><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>1545-598X</issn><eissn>1558-0571</eissn><coden>IGRSBY</coden><abstract>Global urban expansion presents a clear upward trend, reshaping urban socioeconomic frameworks and environmental dynamics. This study developed a multisource classification framework to accurately identify hillside urban expansion (HUE) across China, a region undergoing rapid transformation amidst diverse mountainous landscapes. Based on this foundation, we investigated the spatiotemporal evolution patterns of HUE and analyzed its influence on the urban thermal environment (UTE). Results show that leveraging a developed classification framework, the identified HUE exhibits stronger edge detail capture and higher patch integrity, achieving an overall accuracy of 78%. HUE in China shows a general trend of spatial expansion, predominantly dominated by low hillside urban expansion (LC) and moderate hillside urban expansion (MC). The relationship between HUE and land surface temperature (LST) is predominantly positive and exhibits variability. Specifically, LC maintains a stable positive correlation with LST, whereas MC and heavy HUE display varying relationships with LST. Our study presents an effective way for accurately identifying and evaluating HUE and its UTE effects. It provides a scientific reference for land use and spatial governance studies and holds notable implications for the progress evaluation with the UN's Sustainable Development Goals by 2030, particularly SDG 11 (Sustainable Cities).</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LGRS.2024.3520102</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-9047-2885</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-598X
ispartof IEEE geoscience and remote sensing letters, 2025, Vol.22, p.1-5
issn 1545-598X
1558-0571
language eng
recordid cdi_proquest_journals_3150556126
source IEEE Electronic Library (IEL)
subjects China
Classification
digital elevation model (DEM)
Environmental impact
Evaluation
hillside urban expansion (HUE)
Land surface
Land surface temperature
Land use
nighttime light (NTL) remote sensing
Normalized difference vegetation index
Remote sensing
Socioeconomics
Soft sensors
Spatial resolution
Spatiotemporal phenomena
Surface temperature
Sustainability
Sustainable development
Sustainable Development Goals
thermal environment
Thermal environments
Thermal transformations
Urban areas
Urban development
Urban sprawl
title Assessing China's Hillside Urban Expansion and Its Urban Thermal Environmental Impacts Using Multisource Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T10%3A47%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20China's%20Hillside%20Urban%20Expansion%20and%20Its%20Urban%20Thermal%20Environmental%20Impacts%20Using%20Multisource%20Data&rft.jtitle=IEEE%20geoscience%20and%20remote%20sensing%20letters&rft.au=Wang,%20Junru&rft.date=2025&rft.volume=22&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=1545-598X&rft.eissn=1558-0571&rft.coden=IGRSBY&rft_id=info:doi/10.1109/LGRS.2024.3520102&rft_dat=%3Cproquest_RIE%3E3150556126%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150556126&rft_id=info:pmid/&rft_ieee_id=10810463&rfr_iscdi=true