Extinction and persistence of lumpy skin disease: a deep learning framework for parameter estimation and model simulation
Lumpy Skin Disease (LSD) of cattle, an infectious and fatal viral ailment, poses a significant challenge to the farming sector due to its economic impact. A deterministic Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) model, is utilized in developing a Physics-Informed Neural Network—a...
Gespeichert in:
Veröffentlicht in: | Modeling earth systems and environment 2025-02, Vol.11 (1), p.50, Article 50 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 50 |
container_title | Modeling earth systems and environment |
container_volume | 11 |
creator | Renald, Edwiga Tchuenche, Jean M. Buza, Joram Masanja, Verdiana G. |
description | Lumpy Skin Disease (LSD) of cattle, an infectious and fatal viral ailment, poses a significant challenge to the farming sector due to its economic impact. A deterministic Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) model, is utilized in developing a Physics-Informed Neural Network—a deep learning framework for parameter estimation and simulation of LSD dynamics. The deep learning structure is presented alongside an illustration of its application using synthetic data on infectious cattle counts. To accommodate inherent variability in the model, the deterministic version is extended to a stochastic model by introducing environmental noise, assuming that biting rate is the primary source of randomness. Lyapunov second method is used to prove the existence of a unique global positive solution for the stochastic model under specified initial conditions. Subsequently, the stochastic model is employed to establish conditions for both extinction and persistence. Results of the stochastic model simulation indicate potential eradication of the disease when the environmental noise decreases. On the other hand the designed Physics-Informed Neural Network for LSD demonstrates high efficiency in model prediction and parameter estimation especially when few data is available. Analytical results underscore the importance of implementing strategies to reduce biting such as biological control methods as a means to mitigate the transmission of LSD. |
doi_str_mv | 10.1007/s40808-024-02208-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3150441261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3150441261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-3bead8c15bed747b2e04ea38d95b7ec9f6db131cbcefa222a560a6003cc267df3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVKU_wMkS58DaTpyEG6rKQ6rEBc6WY2-qtIkT7FTQv8clqNw4rPahmdnREHLN4JYB5HchhQKKBHgai8epOCMzLqRIJGfs_DSDuCSLELYAwCSXsixn5LD6GhtnxqZ3VDtLB_ShCSM6g7SvabvvhgMNu8ZR2wTUAe-pphZxoC1q7xq3obXXHX72fkfr3tNBH9cRPcUwNp0-KXe9xZaGptu3P8crclHrNuDit8_J--PqbfmcrF-fXpYP68RwgDERFWpbGJZVaPM0rzhCiloUtsyqHE1ZS1sxwUxlsNacc51J0BJAGMNlbmsxJzeT7uD7j300pbb93rv4UgmWQZoyLllE8QllfB-Cx1oNPrr3B8VAHVNWU8oqpqx-UlZFJImJFCLYbdD_Sf_D-gaMT4KT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150441261</pqid></control><display><type>article</type><title>Extinction and persistence of lumpy skin disease: a deep learning framework for parameter estimation and model simulation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Renald, Edwiga ; Tchuenche, Jean M. ; Buza, Joram ; Masanja, Verdiana G.</creator><creatorcontrib>Renald, Edwiga ; Tchuenche, Jean M. ; Buza, Joram ; Masanja, Verdiana G.</creatorcontrib><description>Lumpy Skin Disease (LSD) of cattle, an infectious and fatal viral ailment, poses a significant challenge to the farming sector due to its economic impact. A deterministic Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) model, is utilized in developing a Physics-Informed Neural Network—a deep learning framework for parameter estimation and simulation of LSD dynamics. The deep learning structure is presented alongside an illustration of its application using synthetic data on infectious cattle counts. To accommodate inherent variability in the model, the deterministic version is extended to a stochastic model by introducing environmental noise, assuming that biting rate is the primary source of randomness. Lyapunov second method is used to prove the existence of a unique global positive solution for the stochastic model under specified initial conditions. Subsequently, the stochastic model is employed to establish conditions for both extinction and persistence. Results of the stochastic model simulation indicate potential eradication of the disease when the environmental noise decreases. On the other hand the designed Physics-Informed Neural Network for LSD demonstrates high efficiency in model prediction and parameter estimation especially when few data is available. Analytical results underscore the importance of implementing strategies to reduce biting such as biological control methods as a means to mitigate the transmission of LSD.</description><identifier>ISSN: 2363-6203</identifier><identifier>EISSN: 2363-6211</identifier><identifier>DOI: 10.1007/s40808-024-02208-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Background noise ; Biological control ; Biological effects ; Biological models (mathematics) ; Biting ; Cattle ; Chemistry and Earth Sciences ; Computer Science ; Control methods ; Deep learning ; Disease control ; Disease transmission ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Economic impact ; Ecosystems ; Environment ; Extinction ; Illustrations ; Initial conditions ; Lumpy skin disease ; Math. Appl. in Environmental Science ; Mathematical Applications in the Physical Sciences ; Neural networks ; Noise prediction ; Noise reduction ; Original Article ; Parameter estimation ; Physics ; Randomness ; Simulation ; Skin diseases ; Statistics for Engineering ; Stochastic models ; Synthetic data</subject><ispartof>Modeling earth systems and environment, 2025-02, Vol.11 (1), p.50, Article 50</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Feb 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-3bead8c15bed747b2e04ea38d95b7ec9f6db131cbcefa222a560a6003cc267df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40808-024-02208-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40808-024-02208-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Renald, Edwiga</creatorcontrib><creatorcontrib>Tchuenche, Jean M.</creatorcontrib><creatorcontrib>Buza, Joram</creatorcontrib><creatorcontrib>Masanja, Verdiana G.</creatorcontrib><title>Extinction and persistence of lumpy skin disease: a deep learning framework for parameter estimation and model simulation</title><title>Modeling earth systems and environment</title><addtitle>Model. Earth Syst. Environ</addtitle><description>Lumpy Skin Disease (LSD) of cattle, an infectious and fatal viral ailment, poses a significant challenge to the farming sector due to its economic impact. A deterministic Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) model, is utilized in developing a Physics-Informed Neural Network—a deep learning framework for parameter estimation and simulation of LSD dynamics. The deep learning structure is presented alongside an illustration of its application using synthetic data on infectious cattle counts. To accommodate inherent variability in the model, the deterministic version is extended to a stochastic model by introducing environmental noise, assuming that biting rate is the primary source of randomness. Lyapunov second method is used to prove the existence of a unique global positive solution for the stochastic model under specified initial conditions. Subsequently, the stochastic model is employed to establish conditions for both extinction and persistence. Results of the stochastic model simulation indicate potential eradication of the disease when the environmental noise decreases. On the other hand the designed Physics-Informed Neural Network for LSD demonstrates high efficiency in model prediction and parameter estimation especially when few data is available. Analytical results underscore the importance of implementing strategies to reduce biting such as biological control methods as a means to mitigate the transmission of LSD.</description><subject>Background noise</subject><subject>Biological control</subject><subject>Biological effects</subject><subject>Biological models (mathematics)</subject><subject>Biting</subject><subject>Cattle</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Control methods</subject><subject>Deep learning</subject><subject>Disease control</subject><subject>Disease transmission</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Economic impact</subject><subject>Ecosystems</subject><subject>Environment</subject><subject>Extinction</subject><subject>Illustrations</subject><subject>Initial conditions</subject><subject>Lumpy skin disease</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Neural networks</subject><subject>Noise prediction</subject><subject>Noise reduction</subject><subject>Original Article</subject><subject>Parameter estimation</subject><subject>Physics</subject><subject>Randomness</subject><subject>Simulation</subject><subject>Skin diseases</subject><subject>Statistics for Engineering</subject><subject>Stochastic models</subject><subject>Synthetic data</subject><issn>2363-6203</issn><issn>2363-6211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIVKU_wMkS58DaTpyEG6rKQ6rEBc6WY2-qtIkT7FTQv8clqNw4rPahmdnREHLN4JYB5HchhQKKBHgai8epOCMzLqRIJGfs_DSDuCSLELYAwCSXsixn5LD6GhtnxqZ3VDtLB_ShCSM6g7SvabvvhgMNu8ZR2wTUAe-pphZxoC1q7xq3obXXHX72fkfr3tNBH9cRPcUwNp0-KXe9xZaGptu3P8crclHrNuDit8_J--PqbfmcrF-fXpYP68RwgDERFWpbGJZVaPM0rzhCiloUtsyqHE1ZS1sxwUxlsNacc51J0BJAGMNlbmsxJzeT7uD7j300pbb93rv4UgmWQZoyLllE8QllfB-Cx1oNPrr3B8VAHVNWU8oqpqx-UlZFJImJFCLYbdD_Sf_D-gaMT4KT</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Renald, Edwiga</creator><creator>Tchuenche, Jean M.</creator><creator>Buza, Joram</creator><creator>Masanja, Verdiana G.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20250201</creationdate><title>Extinction and persistence of lumpy skin disease: a deep learning framework for parameter estimation and model simulation</title><author>Renald, Edwiga ; Tchuenche, Jean M. ; Buza, Joram ; Masanja, Verdiana G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-3bead8c15bed747b2e04ea38d95b7ec9f6db131cbcefa222a560a6003cc267df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Background noise</topic><topic>Biological control</topic><topic>Biological effects</topic><topic>Biological models (mathematics)</topic><topic>Biting</topic><topic>Cattle</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Control methods</topic><topic>Deep learning</topic><topic>Disease control</topic><topic>Disease transmission</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Economic impact</topic><topic>Ecosystems</topic><topic>Environment</topic><topic>Extinction</topic><topic>Illustrations</topic><topic>Initial conditions</topic><topic>Lumpy skin disease</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Neural networks</topic><topic>Noise prediction</topic><topic>Noise reduction</topic><topic>Original Article</topic><topic>Parameter estimation</topic><topic>Physics</topic><topic>Randomness</topic><topic>Simulation</topic><topic>Skin diseases</topic><topic>Statistics for Engineering</topic><topic>Stochastic models</topic><topic>Synthetic data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renald, Edwiga</creatorcontrib><creatorcontrib>Tchuenche, Jean M.</creatorcontrib><creatorcontrib>Buza, Joram</creatorcontrib><creatorcontrib>Masanja, Verdiana G.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Modeling earth systems and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renald, Edwiga</au><au>Tchuenche, Jean M.</au><au>Buza, Joram</au><au>Masanja, Verdiana G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extinction and persistence of lumpy skin disease: a deep learning framework for parameter estimation and model simulation</atitle><jtitle>Modeling earth systems and environment</jtitle><stitle>Model. Earth Syst. Environ</stitle><date>2025-02-01</date><risdate>2025</risdate><volume>11</volume><issue>1</issue><spage>50</spage><pages>50-</pages><artnum>50</artnum><issn>2363-6203</issn><eissn>2363-6211</eissn><abstract>Lumpy Skin Disease (LSD) of cattle, an infectious and fatal viral ailment, poses a significant challenge to the farming sector due to its economic impact. A deterministic Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) model, is utilized in developing a Physics-Informed Neural Network—a deep learning framework for parameter estimation and simulation of LSD dynamics. The deep learning structure is presented alongside an illustration of its application using synthetic data on infectious cattle counts. To accommodate inherent variability in the model, the deterministic version is extended to a stochastic model by introducing environmental noise, assuming that biting rate is the primary source of randomness. Lyapunov second method is used to prove the existence of a unique global positive solution for the stochastic model under specified initial conditions. Subsequently, the stochastic model is employed to establish conditions for both extinction and persistence. Results of the stochastic model simulation indicate potential eradication of the disease when the environmental noise decreases. On the other hand the designed Physics-Informed Neural Network for LSD demonstrates high efficiency in model prediction and parameter estimation especially when few data is available. Analytical results underscore the importance of implementing strategies to reduce biting such as biological control methods as a means to mitigate the transmission of LSD.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40808-024-02208-8</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2363-6203 |
ispartof | Modeling earth systems and environment, 2025-02, Vol.11 (1), p.50, Article 50 |
issn | 2363-6203 2363-6211 |
language | eng |
recordid | cdi_proquest_journals_3150441261 |
source | SpringerLink Journals - AutoHoldings |
subjects | Background noise Biological control Biological effects Biological models (mathematics) Biting Cattle Chemistry and Earth Sciences Computer Science Control methods Deep learning Disease control Disease transmission Earth and Environmental Science Earth Sciences Earth System Sciences Economic impact Ecosystems Environment Extinction Illustrations Initial conditions Lumpy skin disease Math. Appl. in Environmental Science Mathematical Applications in the Physical Sciences Neural networks Noise prediction Noise reduction Original Article Parameter estimation Physics Randomness Simulation Skin diseases Statistics for Engineering Stochastic models Synthetic data |
title | Extinction and persistence of lumpy skin disease: a deep learning framework for parameter estimation and model simulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extinction%20and%20persistence%20of%20lumpy%20skin%20disease:%20a%20deep%20learning%20framework%20for%20parameter%20estimation%20and%20model%20simulation&rft.jtitle=Modeling%20earth%20systems%20and%20environment&rft.au=Renald,%20Edwiga&rft.date=2025-02-01&rft.volume=11&rft.issue=1&rft.spage=50&rft.pages=50-&rft.artnum=50&rft.issn=2363-6203&rft.eissn=2363-6211&rft_id=info:doi/10.1007/s40808-024-02208-8&rft_dat=%3Cproquest_cross%3E3150441261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150441261&rft_id=info:pmid/&rfr_iscdi=true |