Extinction and persistence of lumpy skin disease: a deep learning framework for parameter estimation and model simulation

Lumpy Skin Disease (LSD) of cattle, an infectious and fatal viral ailment, poses a significant challenge to the farming sector due to its economic impact. A deterministic Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) model, is utilized in developing a Physics-Informed Neural Network—a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Modeling earth systems and environment 2025-02, Vol.11 (1), p.50, Article 50
Hauptverfasser: Renald, Edwiga, Tchuenche, Jean M., Buza, Joram, Masanja, Verdiana G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 50
container_title Modeling earth systems and environment
container_volume 11
creator Renald, Edwiga
Tchuenche, Jean M.
Buza, Joram
Masanja, Verdiana G.
description Lumpy Skin Disease (LSD) of cattle, an infectious and fatal viral ailment, poses a significant challenge to the farming sector due to its economic impact. A deterministic Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) model, is utilized in developing a Physics-Informed Neural Network—a deep learning framework for parameter estimation and simulation of LSD dynamics. The deep learning structure is presented alongside an illustration of its application using synthetic data on infectious cattle counts. To accommodate inherent variability in the model, the deterministic version is extended to a stochastic model by introducing environmental noise, assuming that biting rate is the primary source of randomness. Lyapunov second method is used to prove the existence of a unique global positive solution for the stochastic model under specified initial conditions. Subsequently, the stochastic model is employed to establish conditions for both extinction and persistence. Results of the stochastic model simulation indicate potential eradication of the disease when the environmental noise decreases. On the other hand the designed Physics-Informed Neural Network for LSD demonstrates high efficiency in model prediction and parameter estimation especially when few data is available. Analytical results underscore the importance of implementing strategies to reduce biting such as biological control methods as a means to mitigate the transmission of LSD.
doi_str_mv 10.1007/s40808-024-02208-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3150441261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3150441261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-3bead8c15bed747b2e04ea38d95b7ec9f6db131cbcefa222a560a6003cc267df3</originalsourceid><addsrcrecordid>eNp9UMtOwzAQtBBIVKU_wMkS58DaTpyEG6rKQ6rEBc6WY2-qtIkT7FTQv8clqNw4rPahmdnREHLN4JYB5HchhQKKBHgai8epOCMzLqRIJGfs_DSDuCSLELYAwCSXsixn5LD6GhtnxqZ3VDtLB_ShCSM6g7SvabvvhgMNu8ZR2wTUAe-pphZxoC1q7xq3obXXHX72fkfr3tNBH9cRPcUwNp0-KXe9xZaGptu3P8crclHrNuDit8_J--PqbfmcrF-fXpYP68RwgDERFWpbGJZVaPM0rzhCiloUtsyqHE1ZS1sxwUxlsNacc51J0BJAGMNlbmsxJzeT7uD7j300pbb93rv4UgmWQZoyLllE8QllfB-Cx1oNPrr3B8VAHVNWU8oqpqx-UlZFJImJFCLYbdD_Sf_D-gaMT4KT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150441261</pqid></control><display><type>article</type><title>Extinction and persistence of lumpy skin disease: a deep learning framework for parameter estimation and model simulation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Renald, Edwiga ; Tchuenche, Jean M. ; Buza, Joram ; Masanja, Verdiana G.</creator><creatorcontrib>Renald, Edwiga ; Tchuenche, Jean M. ; Buza, Joram ; Masanja, Verdiana G.</creatorcontrib><description>Lumpy Skin Disease (LSD) of cattle, an infectious and fatal viral ailment, poses a significant challenge to the farming sector due to its economic impact. A deterministic Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) model, is utilized in developing a Physics-Informed Neural Network—a deep learning framework for parameter estimation and simulation of LSD dynamics. The deep learning structure is presented alongside an illustration of its application using synthetic data on infectious cattle counts. To accommodate inherent variability in the model, the deterministic version is extended to a stochastic model by introducing environmental noise, assuming that biting rate is the primary source of randomness. Lyapunov second method is used to prove the existence of a unique global positive solution for the stochastic model under specified initial conditions. Subsequently, the stochastic model is employed to establish conditions for both extinction and persistence. Results of the stochastic model simulation indicate potential eradication of the disease when the environmental noise decreases. On the other hand the designed Physics-Informed Neural Network for LSD demonstrates high efficiency in model prediction and parameter estimation especially when few data is available. Analytical results underscore the importance of implementing strategies to reduce biting such as biological control methods as a means to mitigate the transmission of LSD.</description><identifier>ISSN: 2363-6203</identifier><identifier>EISSN: 2363-6211</identifier><identifier>DOI: 10.1007/s40808-024-02208-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Background noise ; Biological control ; Biological effects ; Biological models (mathematics) ; Biting ; Cattle ; Chemistry and Earth Sciences ; Computer Science ; Control methods ; Deep learning ; Disease control ; Disease transmission ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Economic impact ; Ecosystems ; Environment ; Extinction ; Illustrations ; Initial conditions ; Lumpy skin disease ; Math. Appl. in Environmental Science ; Mathematical Applications in the Physical Sciences ; Neural networks ; Noise prediction ; Noise reduction ; Original Article ; Parameter estimation ; Physics ; Randomness ; Simulation ; Skin diseases ; Statistics for Engineering ; Stochastic models ; Synthetic data</subject><ispartof>Modeling earth systems and environment, 2025-02, Vol.11 (1), p.50, Article 50</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. Feb 2025</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-3bead8c15bed747b2e04ea38d95b7ec9f6db131cbcefa222a560a6003cc267df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40808-024-02208-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40808-024-02208-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Renald, Edwiga</creatorcontrib><creatorcontrib>Tchuenche, Jean M.</creatorcontrib><creatorcontrib>Buza, Joram</creatorcontrib><creatorcontrib>Masanja, Verdiana G.</creatorcontrib><title>Extinction and persistence of lumpy skin disease: a deep learning framework for parameter estimation and model simulation</title><title>Modeling earth systems and environment</title><addtitle>Model. Earth Syst. Environ</addtitle><description>Lumpy Skin Disease (LSD) of cattle, an infectious and fatal viral ailment, poses a significant challenge to the farming sector due to its economic impact. A deterministic Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) model, is utilized in developing a Physics-Informed Neural Network—a deep learning framework for parameter estimation and simulation of LSD dynamics. The deep learning structure is presented alongside an illustration of its application using synthetic data on infectious cattle counts. To accommodate inherent variability in the model, the deterministic version is extended to a stochastic model by introducing environmental noise, assuming that biting rate is the primary source of randomness. Lyapunov second method is used to prove the existence of a unique global positive solution for the stochastic model under specified initial conditions. Subsequently, the stochastic model is employed to establish conditions for both extinction and persistence. Results of the stochastic model simulation indicate potential eradication of the disease when the environmental noise decreases. On the other hand the designed Physics-Informed Neural Network for LSD demonstrates high efficiency in model prediction and parameter estimation especially when few data is available. Analytical results underscore the importance of implementing strategies to reduce biting such as biological control methods as a means to mitigate the transmission of LSD.</description><subject>Background noise</subject><subject>Biological control</subject><subject>Biological effects</subject><subject>Biological models (mathematics)</subject><subject>Biting</subject><subject>Cattle</subject><subject>Chemistry and Earth Sciences</subject><subject>Computer Science</subject><subject>Control methods</subject><subject>Deep learning</subject><subject>Disease control</subject><subject>Disease transmission</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Economic impact</subject><subject>Ecosystems</subject><subject>Environment</subject><subject>Extinction</subject><subject>Illustrations</subject><subject>Initial conditions</subject><subject>Lumpy skin disease</subject><subject>Math. Appl. in Environmental Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Neural networks</subject><subject>Noise prediction</subject><subject>Noise reduction</subject><subject>Original Article</subject><subject>Parameter estimation</subject><subject>Physics</subject><subject>Randomness</subject><subject>Simulation</subject><subject>Skin diseases</subject><subject>Statistics for Engineering</subject><subject>Stochastic models</subject><subject>Synthetic data</subject><issn>2363-6203</issn><issn>2363-6211</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNp9UMtOwzAQtBBIVKU_wMkS58DaTpyEG6rKQ6rEBc6WY2-qtIkT7FTQv8clqNw4rPahmdnREHLN4JYB5HchhQKKBHgai8epOCMzLqRIJGfs_DSDuCSLELYAwCSXsixn5LD6GhtnxqZ3VDtLB_ShCSM6g7SvabvvhgMNu8ZR2wTUAe-pphZxoC1q7xq3obXXHX72fkfr3tNBH9cRPcUwNp0-KXe9xZaGptu3P8crclHrNuDit8_J--PqbfmcrF-fXpYP68RwgDERFWpbGJZVaPM0rzhCiloUtsyqHE1ZS1sxwUxlsNacc51J0BJAGMNlbmsxJzeT7uD7j300pbb93rv4UgmWQZoyLllE8QllfB-Cx1oNPrr3B8VAHVNWU8oqpqx-UlZFJImJFCLYbdD_Sf_D-gaMT4KT</recordid><startdate>20250201</startdate><enddate>20250201</enddate><creator>Renald, Edwiga</creator><creator>Tchuenche, Jean M.</creator><creator>Buza, Joram</creator><creator>Masanja, Verdiana G.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20250201</creationdate><title>Extinction and persistence of lumpy skin disease: a deep learning framework for parameter estimation and model simulation</title><author>Renald, Edwiga ; Tchuenche, Jean M. ; Buza, Joram ; Masanja, Verdiana G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-3bead8c15bed747b2e04ea38d95b7ec9f6db131cbcefa222a560a6003cc267df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Background noise</topic><topic>Biological control</topic><topic>Biological effects</topic><topic>Biological models (mathematics)</topic><topic>Biting</topic><topic>Cattle</topic><topic>Chemistry and Earth Sciences</topic><topic>Computer Science</topic><topic>Control methods</topic><topic>Deep learning</topic><topic>Disease control</topic><topic>Disease transmission</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Economic impact</topic><topic>Ecosystems</topic><topic>Environment</topic><topic>Extinction</topic><topic>Illustrations</topic><topic>Initial conditions</topic><topic>Lumpy skin disease</topic><topic>Math. Appl. in Environmental Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Neural networks</topic><topic>Noise prediction</topic><topic>Noise reduction</topic><topic>Original Article</topic><topic>Parameter estimation</topic><topic>Physics</topic><topic>Randomness</topic><topic>Simulation</topic><topic>Skin diseases</topic><topic>Statistics for Engineering</topic><topic>Stochastic models</topic><topic>Synthetic data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Renald, Edwiga</creatorcontrib><creatorcontrib>Tchuenche, Jean M.</creatorcontrib><creatorcontrib>Buza, Joram</creatorcontrib><creatorcontrib>Masanja, Verdiana G.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Modeling earth systems and environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Renald, Edwiga</au><au>Tchuenche, Jean M.</au><au>Buza, Joram</au><au>Masanja, Verdiana G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extinction and persistence of lumpy skin disease: a deep learning framework for parameter estimation and model simulation</atitle><jtitle>Modeling earth systems and environment</jtitle><stitle>Model. Earth Syst. Environ</stitle><date>2025-02-01</date><risdate>2025</risdate><volume>11</volume><issue>1</issue><spage>50</spage><pages>50-</pages><artnum>50</artnum><issn>2363-6203</issn><eissn>2363-6211</eissn><abstract>Lumpy Skin Disease (LSD) of cattle, an infectious and fatal viral ailment, poses a significant challenge to the farming sector due to its economic impact. A deterministic Susceptible-Exposed-Infectious-Recovered-Susceptible (SEIRS) model, is utilized in developing a Physics-Informed Neural Network—a deep learning framework for parameter estimation and simulation of LSD dynamics. The deep learning structure is presented alongside an illustration of its application using synthetic data on infectious cattle counts. To accommodate inherent variability in the model, the deterministic version is extended to a stochastic model by introducing environmental noise, assuming that biting rate is the primary source of randomness. Lyapunov second method is used to prove the existence of a unique global positive solution for the stochastic model under specified initial conditions. Subsequently, the stochastic model is employed to establish conditions for both extinction and persistence. Results of the stochastic model simulation indicate potential eradication of the disease when the environmental noise decreases. On the other hand the designed Physics-Informed Neural Network for LSD demonstrates high efficiency in model prediction and parameter estimation especially when few data is available. Analytical results underscore the importance of implementing strategies to reduce biting such as biological control methods as a means to mitigate the transmission of LSD.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40808-024-02208-8</doi></addata></record>
fulltext fulltext
identifier ISSN: 2363-6203
ispartof Modeling earth systems and environment, 2025-02, Vol.11 (1), p.50, Article 50
issn 2363-6203
2363-6211
language eng
recordid cdi_proquest_journals_3150441261
source SpringerLink Journals - AutoHoldings
subjects Background noise
Biological control
Biological effects
Biological models (mathematics)
Biting
Cattle
Chemistry and Earth Sciences
Computer Science
Control methods
Deep learning
Disease control
Disease transmission
Earth and Environmental Science
Earth Sciences
Earth System Sciences
Economic impact
Ecosystems
Environment
Extinction
Illustrations
Initial conditions
Lumpy skin disease
Math. Appl. in Environmental Science
Mathematical Applications in the Physical Sciences
Neural networks
Noise prediction
Noise reduction
Original Article
Parameter estimation
Physics
Randomness
Simulation
Skin diseases
Statistics for Engineering
Stochastic models
Synthetic data
title Extinction and persistence of lumpy skin disease: a deep learning framework for parameter estimation and model simulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extinction%20and%20persistence%20of%20lumpy%20skin%20disease:%20a%20deep%20learning%20framework%20for%20parameter%20estimation%20and%20model%20simulation&rft.jtitle=Modeling%20earth%20systems%20and%20environment&rft.au=Renald,%20Edwiga&rft.date=2025-02-01&rft.volume=11&rft.issue=1&rft.spage=50&rft.pages=50-&rft.artnum=50&rft.issn=2363-6203&rft.eissn=2363-6211&rft_id=info:doi/10.1007/s40808-024-02208-8&rft_dat=%3Cproquest_cross%3E3150441261%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150441261&rft_id=info:pmid/&rfr_iscdi=true