Modeling and Simulation of Quantum State Distribution in Graphene Nanoribbon GaN/InSb TFETs for High-Precision Biosensing Applications

This study examines graphene nanoribbon tunnel field-effect transistors utilizing GaN/InSb (GR-GaN/InSb TFETs) with novel doping profiles aimed at enhancing performance in nanoscale applications, specifically for sub-5 nm technology. This study employs quantum simulations grounded in the Non-Equilib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensing and imaging 2024-12, Vol.26 (1), Article 4
Hauptverfasser: Kumaran, V. N. Senthil, Venkatesh, M., Alqahtani, Abdulrahman Saad, Elshafie, Hashim, Parthasarathy, P., Mubarakali, Azath
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Sensing and imaging
container_volume 26
creator Kumaran, V. N. Senthil
Venkatesh, M.
Alqahtani, Abdulrahman Saad
Elshafie, Hashim
Parthasarathy, P.
Mubarakali, Azath
description This study examines graphene nanoribbon tunnel field-effect transistors utilizing GaN/InSb (GR-GaN/InSb TFETs) with novel doping profiles aimed at enhancing performance in nanoscale applications, specifically for sub-5 nm technology. This study employs quantum simulations grounded in the Non-Equilibrium Green’s Function (NEGF) formalism to model the I-V characteristics, subthreshold swing, charge density, and I ON /I OFF ratios of the proposed designs. The tailored doping profiles effectively mitigate direct source-to-drain tunneling, a significant challenge in ultra-scaled GR-GaN/InSb TFETs, while also reducing ambipolar behavior and enhancing metrics such as leakage current, switching speed, and energy efficiency. Additionally, this work explores double-gate GR-GaN/InSb TFETs with dielectric modulation for ultra-sensitive biomolecule sensing applications. The results indicate that these novel device architectures surpass traditional FET-based sensors regarding electrical performance and scalability. The proposed device utilizes dielectric and work function modulation techniques to enhance sensitivity and overall functionality, making it a promising candidate for low-power, high-performance biosensing applications.
doi_str_mv 10.1007/s11220-024-00527-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_3150336324</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3150336324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c200t-1959e3b11b68abb11971f2212bbeefcddf285f47d9257c43d87a7bce78ec4d8f3</originalsourceid><addsrcrecordid>eNp9ULtOwzAUjRBIlMIPMFliDvUrcTKWAm2l8lLLbNmJ3bpq7WAnAz_Ad-M2SDAxnat7XtJJkmsEbxGEbBQQwhimENMUwgyztDxJBijLWIohw6d_7vPkIoQthJTSPB8kX0-uVjtj10DYGizNvtuJ1jgLnAZvnbBttwfLVrQK3JvQeiO7I2ssmHrRbJRV4FlYFwkZ31PxPJrbpQSrx4dVANp5MDPrTfrqVWXCwXhnXFA2HArHTbMz1bEtXCZnWuyCuvrBYfIeEyazdPEynU_Gi7TCELYpKrNSEYmQzAshI5YMaYwRllIpXdW1xkWmKatLnLGKkrpggslKsUJVtC40GSY3fW7j3UenQsu3rvM2VnKCMkhITjCNKtyrKu9C8Erzxpu98J8cQX7Ym_d787g3P-7Ny2givSlEsV0r_xv9j-sb-N2EwA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150336324</pqid></control><display><type>article</type><title>Modeling and Simulation of Quantum State Distribution in Graphene Nanoribbon GaN/InSb TFETs for High-Precision Biosensing Applications</title><source>SpringerLink Journals</source><creator>Kumaran, V. N. Senthil ; Venkatesh, M. ; Alqahtani, Abdulrahman Saad ; Elshafie, Hashim ; Parthasarathy, P. ; Mubarakali, Azath</creator><creatorcontrib>Kumaran, V. N. Senthil ; Venkatesh, M. ; Alqahtani, Abdulrahman Saad ; Elshafie, Hashim ; Parthasarathy, P. ; Mubarakali, Azath</creatorcontrib><description>This study examines graphene nanoribbon tunnel field-effect transistors utilizing GaN/InSb (GR-GaN/InSb TFETs) with novel doping profiles aimed at enhancing performance in nanoscale applications, specifically for sub-5 nm technology. This study employs quantum simulations grounded in the Non-Equilibrium Green’s Function (NEGF) formalism to model the I-V characteristics, subthreshold swing, charge density, and I ON /I OFF ratios of the proposed designs. The tailored doping profiles effectively mitigate direct source-to-drain tunneling, a significant challenge in ultra-scaled GR-GaN/InSb TFETs, while also reducing ambipolar behavior and enhancing metrics such as leakage current, switching speed, and energy efficiency. Additionally, this work explores double-gate GR-GaN/InSb TFETs with dielectric modulation for ultra-sensitive biomolecule sensing applications. The results indicate that these novel device architectures surpass traditional FET-based sensors regarding electrical performance and scalability. The proposed device utilizes dielectric and work function modulation techniques to enhance sensitivity and overall functionality, making it a promising candidate for low-power, high-performance biosensing applications.</description><identifier>ISSN: 1557-2072</identifier><identifier>ISSN: 1557-2064</identifier><identifier>EISSN: 1557-2072</identifier><identifier>DOI: 10.1007/s11220-024-00527-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biomolecules ; Biosensors ; Charge density ; Current voltage characteristics ; Doping ; Electrical Engineering ; Engineering ; Field effect transistors ; Gallium nitrides ; Graphene ; Green's functions ; Imaging ; Indium antimonide ; Intermetallic compounds ; Leakage current ; Microwaves ; Modulation ; Nanoribbons ; Performance enhancement ; Radiology ; RF and Optical Engineering ; Semiconductor devices ; Work functions</subject><ispartof>Sensing and imaging, 2024-12, Vol.26 (1), Article 4</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Copyright Springer Nature B.V. 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c200t-1959e3b11b68abb11971f2212bbeefcddf285f47d9257c43d87a7bce78ec4d8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11220-024-00527-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11220-024-00527-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kumaran, V. N. Senthil</creatorcontrib><creatorcontrib>Venkatesh, M.</creatorcontrib><creatorcontrib>Alqahtani, Abdulrahman Saad</creatorcontrib><creatorcontrib>Elshafie, Hashim</creatorcontrib><creatorcontrib>Parthasarathy, P.</creatorcontrib><creatorcontrib>Mubarakali, Azath</creatorcontrib><title>Modeling and Simulation of Quantum State Distribution in Graphene Nanoribbon GaN/InSb TFETs for High-Precision Biosensing Applications</title><title>Sensing and imaging</title><addtitle>Sens Imaging</addtitle><description>This study examines graphene nanoribbon tunnel field-effect transistors utilizing GaN/InSb (GR-GaN/InSb TFETs) with novel doping profiles aimed at enhancing performance in nanoscale applications, specifically for sub-5 nm technology. This study employs quantum simulations grounded in the Non-Equilibrium Green’s Function (NEGF) formalism to model the I-V characteristics, subthreshold swing, charge density, and I ON /I OFF ratios of the proposed designs. The tailored doping profiles effectively mitigate direct source-to-drain tunneling, a significant challenge in ultra-scaled GR-GaN/InSb TFETs, while also reducing ambipolar behavior and enhancing metrics such as leakage current, switching speed, and energy efficiency. Additionally, this work explores double-gate GR-GaN/InSb TFETs with dielectric modulation for ultra-sensitive biomolecule sensing applications. The results indicate that these novel device architectures surpass traditional FET-based sensors regarding electrical performance and scalability. The proposed device utilizes dielectric and work function modulation techniques to enhance sensitivity and overall functionality, making it a promising candidate for low-power, high-performance biosensing applications.</description><subject>Biomolecules</subject><subject>Biosensors</subject><subject>Charge density</subject><subject>Current voltage characteristics</subject><subject>Doping</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Field effect transistors</subject><subject>Gallium nitrides</subject><subject>Graphene</subject><subject>Green's functions</subject><subject>Imaging</subject><subject>Indium antimonide</subject><subject>Intermetallic compounds</subject><subject>Leakage current</subject><subject>Microwaves</subject><subject>Modulation</subject><subject>Nanoribbons</subject><subject>Performance enhancement</subject><subject>Radiology</subject><subject>RF and Optical Engineering</subject><subject>Semiconductor devices</subject><subject>Work functions</subject><issn>1557-2072</issn><issn>1557-2064</issn><issn>1557-2072</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9ULtOwzAUjRBIlMIPMFliDvUrcTKWAm2l8lLLbNmJ3bpq7WAnAz_Ad-M2SDAxnat7XtJJkmsEbxGEbBQQwhimENMUwgyztDxJBijLWIohw6d_7vPkIoQthJTSPB8kX0-uVjtj10DYGizNvtuJ1jgLnAZvnbBttwfLVrQK3JvQeiO7I2ssmHrRbJRV4FlYFwkZ31PxPJrbpQSrx4dVANp5MDPrTfrqVWXCwXhnXFA2HArHTbMz1bEtXCZnWuyCuvrBYfIeEyazdPEynU_Gi7TCELYpKrNSEYmQzAshI5YMaYwRllIpXdW1xkWmKatLnLGKkrpggslKsUJVtC40GSY3fW7j3UenQsu3rvM2VnKCMkhITjCNKtyrKu9C8Erzxpu98J8cQX7Ym_d787g3P-7Ny2givSlEsV0r_xv9j-sb-N2EwA</recordid><startdate>20241202</startdate><enddate>20241202</enddate><creator>Kumaran, V. N. Senthil</creator><creator>Venkatesh, M.</creator><creator>Alqahtani, Abdulrahman Saad</creator><creator>Elshafie, Hashim</creator><creator>Parthasarathy, P.</creator><creator>Mubarakali, Azath</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>20241202</creationdate><title>Modeling and Simulation of Quantum State Distribution in Graphene Nanoribbon GaN/InSb TFETs for High-Precision Biosensing Applications</title><author>Kumaran, V. N. Senthil ; Venkatesh, M. ; Alqahtani, Abdulrahman Saad ; Elshafie, Hashim ; Parthasarathy, P. ; Mubarakali, Azath</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c200t-1959e3b11b68abb11971f2212bbeefcddf285f47d9257c43d87a7bce78ec4d8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Biomolecules</topic><topic>Biosensors</topic><topic>Charge density</topic><topic>Current voltage characteristics</topic><topic>Doping</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Field effect transistors</topic><topic>Gallium nitrides</topic><topic>Graphene</topic><topic>Green's functions</topic><topic>Imaging</topic><topic>Indium antimonide</topic><topic>Intermetallic compounds</topic><topic>Leakage current</topic><topic>Microwaves</topic><topic>Modulation</topic><topic>Nanoribbons</topic><topic>Performance enhancement</topic><topic>Radiology</topic><topic>RF and Optical Engineering</topic><topic>Semiconductor devices</topic><topic>Work functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumaran, V. N. Senthil</creatorcontrib><creatorcontrib>Venkatesh, M.</creatorcontrib><creatorcontrib>Alqahtani, Abdulrahman Saad</creatorcontrib><creatorcontrib>Elshafie, Hashim</creatorcontrib><creatorcontrib>Parthasarathy, P.</creatorcontrib><creatorcontrib>Mubarakali, Azath</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Sensing and imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumaran, V. N. Senthil</au><au>Venkatesh, M.</au><au>Alqahtani, Abdulrahman Saad</au><au>Elshafie, Hashim</au><au>Parthasarathy, P.</au><au>Mubarakali, Azath</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Simulation of Quantum State Distribution in Graphene Nanoribbon GaN/InSb TFETs for High-Precision Biosensing Applications</atitle><jtitle>Sensing and imaging</jtitle><stitle>Sens Imaging</stitle><date>2024-12-02</date><risdate>2024</risdate><volume>26</volume><issue>1</issue><artnum>4</artnum><issn>1557-2072</issn><issn>1557-2064</issn><eissn>1557-2072</eissn><abstract>This study examines graphene nanoribbon tunnel field-effect transistors utilizing GaN/InSb (GR-GaN/InSb TFETs) with novel doping profiles aimed at enhancing performance in nanoscale applications, specifically for sub-5 nm technology. This study employs quantum simulations grounded in the Non-Equilibrium Green’s Function (NEGF) formalism to model the I-V characteristics, subthreshold swing, charge density, and I ON /I OFF ratios of the proposed designs. The tailored doping profiles effectively mitigate direct source-to-drain tunneling, a significant challenge in ultra-scaled GR-GaN/InSb TFETs, while also reducing ambipolar behavior and enhancing metrics such as leakage current, switching speed, and energy efficiency. Additionally, this work explores double-gate GR-GaN/InSb TFETs with dielectric modulation for ultra-sensitive biomolecule sensing applications. The results indicate that these novel device architectures surpass traditional FET-based sensors regarding electrical performance and scalability. The proposed device utilizes dielectric and work function modulation techniques to enhance sensitivity and overall functionality, making it a promising candidate for low-power, high-performance biosensing applications.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11220-024-00527-9</doi></addata></record>
fulltext fulltext
identifier ISSN: 1557-2072
ispartof Sensing and imaging, 2024-12, Vol.26 (1), Article 4
issn 1557-2072
1557-2064
1557-2072
language eng
recordid cdi_proquest_journals_3150336324
source SpringerLink Journals
subjects Biomolecules
Biosensors
Charge density
Current voltage characteristics
Doping
Electrical Engineering
Engineering
Field effect transistors
Gallium nitrides
Graphene
Green's functions
Imaging
Indium antimonide
Intermetallic compounds
Leakage current
Microwaves
Modulation
Nanoribbons
Performance enhancement
Radiology
RF and Optical Engineering
Semiconductor devices
Work functions
title Modeling and Simulation of Quantum State Distribution in Graphene Nanoribbon GaN/InSb TFETs for High-Precision Biosensing Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T06%3A30%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Simulation%20of%20Quantum%20State%20Distribution%20in%20Graphene%20Nanoribbon%20GaN/InSb%20TFETs%20for%20High-Precision%20Biosensing%20Applications&rft.jtitle=Sensing%20and%20imaging&rft.au=Kumaran,%20V.%20N.%20Senthil&rft.date=2024-12-02&rft.volume=26&rft.issue=1&rft.artnum=4&rft.issn=1557-2072&rft.eissn=1557-2072&rft_id=info:doi/10.1007/s11220-024-00527-9&rft_dat=%3Cproquest_cross%3E3150336324%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3150336324&rft_id=info:pmid/&rfr_iscdi=true